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Dynamics and critical behavior of the q model
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The q model, a random walk model rich in behavior and applications, is investigated. We introduce and
motivate theq model via its application proposed by Coppersmithet al. to the flow of stress through granular
matter at rest. For a special value of its parameters theq model has a critical point that we analyze. To
characterize the critical point we imagine that a uniform load has been applied to the top of the granular
medium and we study the evolution with depth of fluctuations in the distribution of load. Close to the critical
point explicit calculation reveals that the evolution of load exhibits scaling behavior analogous to thermody-
namic critical phenomena. The critical behavior is remarkably tractable: the harvest of analytic results includes
scaling functions that describe the evolution of the variance of the load distribution close to the critical point
and of the entire load distribution right at the critical point, values of the associated critical exponents, and
determination of the upper critical dimension. These results are of intrinsic interest as a tractable example of a
random critical point. Of the many applications of theq model, the critical behavior is particularly relevant to
network models of river basins, as we briefly discuss. Finally we discuss circumstances under which quantum
network models that describe the surface electronic states of a quantum Hall multilayer can be mapped onto the
classicalq model. For mesoscopic multilayers of finite circumference the mapping fails; instead a mapping to
a ferromagnetic supersymmetric spin chain has proved fruitful. We discuss aspects of the superspin mapping
and give an elementary derivation of it making use of operator rather than functional methods.
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I. INTRODUCTION

It is fortunate that in physics the same equations so
times arise in contexts that are apparently very differe
Feynman illustrates this through elementary examples in
introductory lectures on physics to impart the lesson that
‘‘same equations have the same solutions’’@1#. Our purpose
is to study a model, recently dubbed theq model, that pro-
vides another such instance. Theq model has been used t
describe the merging of tributaries to form rivers@2#; the
aggregation of diffusing charges@3#; the flow of stress in a
granular medium@4#; and can be mapped onto the abeli
sandpile, a model studied in context of self-organized cr
cality @5#. It is also closely related to models that describe
surface of a quantum Hall multilayer@6,7# and passive scala
turbulence@8,9#. Here we focus on the application to gran
lar matter, river networks, and the quantum Hall multilay

Granular matter exhibits fascinating behavior that is lit
understood@10#. Examples of granular matter include san
powders, and agricultural grains stored in silos. An import
problem is the propagation of stress through a granular
dium at rest. This has been studied by ingenious exp
ments, in which a vertical load is applied to an amorpho
pack of beads, and the loads on the beads in the top
bottom layers are recorded using carbon paper@11,12#. Such
experiments yield the distribution of load on the beads a
reveal that there are no horizontal correlations in load e
amongst neighboring beads. Theq model was introduced by
Coppersmithet al. to account for the distribution of load@4#.
As we shall see, it also correctly predicts the lack of ho
zontal correlation.

For simplicity we describe theq model in a plane. Since
the vertical and horizontal directions are treated asymme
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cally we call this the 111 dimensionalq model. The exten-
sion to 211 dimensions~relevant to experiments on bea
packs! and higher, is straightforward and is discussed in S
V. In theq model it is assumed that the beads sit on a regu
lattice shown in Fig. 1. The location of the beads is specifi
by the coordinatest ~the depth of the layer! andn ~the loca-
tion of the bead within the layer!. Note thatn takes only even
values fort even; only odd, fort odd. Each bead is assume
to be supported by its two nearest neighbors in the la
directly below. More precisely, it is assumed that a rand
fraction f n(t) of the load of bead (n,t) is supported by the
neighbor to the left, bead (n21,t11); the remainder, 1
2 f n(t), by the neighbor to the right, bead (n11,t11). De-
noting the load on a beadw and its weightI we may write

wn~ t !5wn21~ t21!@12 f n21~ t21!#

1wn11~ t21! f n11~ t21!1I n~ t !. ~1!

FIG. 1. Theq model of stress propagation through a bead pa
in 111 dimensions. The beads are assumed to sit on a reg
lattice. Each bead is supported by its two nearest neighbors in
layer below.
©2001 The American Physical Society07-1
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The content of Eq.~1! is that the load on a bead is the sum
the loads transmitted to it by its neighbors in the layer ab
plus its own weight. The last term in Eq.~1! is called the
injection term. Once the fractions are specified, a given l
on the top layer can be propagated downward by use
Eq. ~1!.

In the q model it is assumed that the fractions a
independent, identically distributed random variabl
The distribution is assumed to be symmetric aboutf 51/2
to avoid introducing a horizontal drift to the flow of stres
in other words it is assumedP( f )5P(12 f ). There
is no other restriction. Thus theq models really constitute
an enormous family of models corresponding
different symmetric distributions P( f ). To fully
specify a particular model it is necessary to choo
the distribution P( f ). One obvious possibility is to take
P( f ) to be uniformly distributed over the unit interva
another is to assume that the fractions must be 0 o
with equal probability. The latter is called the singul
distribution.

Mathematically, theq model is a problem of random
walkers that coalesce upon contact and fission spontaneo
The singular distribution corresponds to the case that
walkers coalesce but do not fission.

Coppersmith et al. argued that, neglecting injection
at sufficient depth the distribution of load would atta
a steady state @4#. They studied P(w,t→`), the
probability distribution of load on beads in a sufficient
deep layer. For almost all distributionsP( f ), except the
singular distribution, it was concluded thatP(w,t→`)
decays exponentially for largew @4,15#. This agrees with
experiment and constitutes an important success of
q model. For the singular distribution, Coppersmithet al.
argued thatP(w,`) follows a power law. Hence they
conjectured that the singular distribution constitutes
critical point in the family ofq models. A major goal of
this paper is to make this analogy to thermodynam
critical phenomena precise by detailed analysis of the crit
point.

In spite of the success mentioned above theq model can-
not be considered a complete theory of stress propagatio
granular matter. This is clear both empirically and
grounds of internal consistency. Since the publication of
q model, interesting new ideas on the subject of stress fl
have appeared@8,13–15#, but in this paper we restrict atten
tion to theq model. This seems justified because theq model
does capture some elements of the physics correctly and
cause it exhibits nontrivial critical behavior that is interesti
in its own right.

Further motivation to study theq model and particularly
its critical point comes from hydrology. To make conta
with that subject consider a singularq model with zero in-
jection and imagine that only a few beads in the top layer
loaded. The load then zigzags downwards, perhaps along
lines shown in Fig. 2. If we interpret these lines as tributar
merging to form a river we arrive at Scheidegger’s model@2#
that appeared in the hydrology literature more than th
02610
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years ago.1 Networks of tributaries in river basins are know
empirically to be scale invariant structures that obey a v
ety of power laws. Scheidegger networks too obey th
laws and are in this statistical sense extremely realistic r
resentations of river basins. An excellent discussion of ri
basin power laws is given in Refs.@18,19#. Reference@18#
presents some discussion of data; Ref.@19# provides a de-
tailed comparison between real and Scheidegger networ

Here we wish to point out that nonsingularq models too
can be interpreted as models of river networks. For exam
consider a model in which the fractions can take only
values 0, 1/2, and 1 with probability (12d)/2, d, and (1
2d)/2, respectively. This model reduces to Scheidegger’s
d→0. It produces networks similar to Scheidegger’s exc
that occasionally streams split to form distributaries. Th
this network is topologically distinct from Scheidegger ne
works. More significantly, as we show below, a network w
nonzerod is not scale invariant. This is reminiscent of a riv
network model studied by Narayan and Fisher@20#. In their
‘‘rocky-river’’ model too the network is not scale invarian
except if a model parameter is tuned to a special~critical!
value. Effectively this tuning parameter also controls riv
splitting. Taken together, these results suggest that river s
ting is a relevant perturbation that spoils the scale invari
structure of networks. In this paper we concentrate on sh
ing that q-model networks with river splitting are not sca
invariant. We do not explore whether such nonscale invar
networks are realized in nature~for further discussion and
speculation in this regard, however, see Sec. VII!.

A quantum Hall multilayer consists of layers of two
dimensional electron gases stacked vertically. Multilay

1Parenthetically we note that Scheidegger’s model is purely
scriptive in the sense that it is a recipe to draw statistically reali
networks. Somewhat different in spirit are models that seek to r
resent physical processes, sometimes very crudely, by which
network forms. Two examples of such models in the recent phy
literature are Refs.@16,17#. The model of Leheny and Nagel fo
example describes an apocalyptic lattice world with discrete tim
Each time step brings precipitation, and in its wake, erosion
avalanches. Realistic networks result.

FIG. 2. Scheidegger’s model:For the singularq model the load
zigzags down lines that merge but do not split. In Scheidegg
model of river basins these lines are interpreted as tributaries m
ing to form a river.
7-2
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DYNAMICS AND CRITICAL BEHAVIOR OF THE q MODEL PHYSICAL REVIEW E 64 026107
can be realized by fabricating an appropriate GaAs het
structure@21#. They are also realized naturally in some o
ganic salts. In a quantum Hall multilayer a sufficiently lar
magnetic field is applied perpendicular to the layers so
the lowest Landau level in each layer is fully occupied. U
der this circumstance the only important electronic state
each layer are the chiral edge states that propagate in
direction only as shown in Fig. 3~a!. These edge states a
coupled by tunneling between layers. Thus the surface
multilayer is covered by a chiral sheath of coupled ed
states. These surface states control the electrical trans
properties of the multilayer. A central question from a qua
tum transport point of view is whether these surface sta
are localized or extended in the direction of the fie
@7,22,23#.

Figure 3~b! shows a network model of the multilayer su
face introduced by Saul, Kardar, and Read@6# and studied by
many authors subsequently. In this model it is assumed
tunneling between edges takes place only at discrete n
@dashed vertical lines in Fig. 3~b!# that appear at regular in
tervals along an edge. The edges are separated by node
horizontal segments called links. The wave function ha
definite value on each link. Each node is visited by two
coming links and by two outgoing links. Each node is ch
acterized by a 232 S matrix that relates the wave functio
on the outgoing links to the incoming amplitudes. Once thS
matrices are specified, given the wave function throug
vertical slice, we can propagate it to the right. TheSmatrices
are chosen at random from some ensemble to incorporat
effect of disorder. To fully specify the model it is necessa
to choose a distribution for theSmatrices. Periodic boundar
conditions are imposed in the horizontal direction@7#.

The directed network model above is quantum mecha
cal but in the limit of infinite circumference and for a spec
choice of disorder, Saul, Kardar, and Read have shown th
reduces to aclassicalmodel, theq model with uniform dis-
tribution of fractions and zero injection@6#. In Sec. VI we
discuss some respects in which more generic models of
multilayer surface, that do not reduce to classical mod
still do show behavior similar to theq model@24,25#. At the
same time we show that in case of finite circumference qu

FIG. 3. A quantum Hall multilayer:Layers of two-dimensiona
electron gases are stacked vertically and a strong perpendi
magnetic field is applied. The important electronic states are a
edge of each layer. These chiral edge states propagate in the
tion shown in~a!. A quantum network model for the surface of th
multilayer is shown in~b!.
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tum interference effects become important and there is l
to be learned from the study of the classicalq model. Instead
a mapping to a ferromagnetic supersymmetric spin chain
proved fruitful in this case@23,26#. In Sec. VI we discuss
aspects of this mapping.

A detailed summary of our results is given in Sec. V
The reader interested in first obtaining an overview of
paper or interested only in the results should proceed dire
to Sec. VII.

II. CRITICAL BEHAVIOR IN 1 ¿1 DIMENSIONS

Coppersmith et al. analyzed the distribution of load
P(w,t→`) at very large depth where presumably a stea
state is achieved@4#. Here we study how the distribution
evolves as a function of depth to this asymptotic steady st
We assume that a uniform load is applied to the top laye

wn~ t !51 for all n. ~2!

In this section we neglect the weight of each bead~the injec-
tion term!. In partial support of this neglect we note that
the experiment of Ref.@12# typically a total load of 7600 N
was applied to the bead pack. In comparison we estimate
the weight of a single bead was less than a milliNewton;
the entire pack, less than 100 N. However, right at the criti
point injection is a relevant perturbation, and at sufficien
large depth must be taken into account even if the weigh
a single bead is small. We return to the effects of injection
Sec. IV.

To make the problem tractable we study not the en
distribution P(w,t) but only its lowest nontrivial moment
With the neglect of injection it follows that the total load o
every layer is the same; theq-model dynamics@Eq. ~1!# just
shuffles this load. Hence the average load in layert

^w~ t !&5E
0

`

dw wP~w,t !

51. ~3!

The lowest nontrivial moment is therefore the variance

^dw2~ t !&5E
0

`

dw w2P~w,t !21. ~4!

Since a uniform load is applied to the top layer the varian
in that layer vanishes. As the load propagates downward,
fluctuations must grow and saturate. Our purpose is to a
lyze this evolution for different distributionsP( f ), particu-
larly those that are close to the singular distribution.

Right at the critical point the asymptotic distributio
P(w,`) is believed to be a power law. If we assume tha
does not have a well defined variance, then by analogy
critical phenomena we surmise that close to the critical po
the variance must diverge as

^dw2~ t→`!&;
1

du
. ~5!
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MARTA LEWANDOWSKA, H. MATHUR, AND Y.-K. YU PHYSICAL REVIEW E 64 026107
Hered measures the distance of a distributionP( f ) from the
singular distribution;d will be defined precisely below. We
also expect that the depth scalejcorr at which the steady stat
is attained will diverge as the critical point is approache
Thus

jcorr;
1

dw
, ~6!

jcorr is a vertical correlation length that diverges as the cr
cal point is approached. Combining Eqs.~5! and ~6! we ex-
pect that close to the critical point the fluctuations must h
a scaling form

^dw2~ t !&5
1

du
F~ tdw!. ~7!

To be consistent with Eq.~5! we expect that the scalin
function F(u)→const asu→`. For short times we expec
that the system should behave as it would at the crit
point. The d dependence should cancel and so we exp
F(u);uu/w for u!1 so that^dw2(t)&;tu/w at the critical
point.

In the remainder of this section we will confirm that E
~7! and these inferences are valid. We will determine
exponentsu andw and the scaling functionF(u).

As an aside to experts we note that it may have been m
natural to name the exponentsu→(32t)/s and w→nz.
These names follow from a more general scaling hypoth
for the entire distribution@Eq. ~174!#. However in this sec-
tion we have elected to make the more restricted hypoth
Eq. ~7! and to give the exponents single letter names tak
care to avoid common exponent names such asa, b, andn.

Finally we should emphasize that although for defini
ness we have assumed that a uniform load is applied to
top layer, it is easy to show that at sufficient depth, in
scaling limit, the dynamics of the load fluctuations are ins
sitive to the precise distribution of load applied to the t
layer.

A. Disorder average

Consider the correlation function

cm~ t !5
1

N (
n

^wn~ t !wn1m~ t !&. ~8!

We assume there areN beads in each layer and we impo
periodic boundary conditions in the horizontal direction. U
timately we are interested in takingN→`. Note thatm is
even for botht5 even andt5 odd. In terms of the correla
tion function the variance is given by

^dw2~ t !&5c0~ t !21. ~9!

The correlation function obeys a remarkably simple evo
tion equation@Eq. ~15! below#. This equation can be solve
by straightforward classical analysis; the exact formal so
tion is given by Eq.~38!. Thus it is not difficult to obtain the
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entire correlation function by this method and thereby obt
information on the horizontal correlation length; but here
present only a detailed analysis of the variance, related to
on-site correlation function via Eq.~9!.

To analyze the evolution of the correlation function w
write

cm~ t11!5
1

N (
n

^wn~ t11!wn1m~ t11!&

5
1

N (
n

^wn11~ t !wn1m11~ t ! f n11~ t ! f n1m11~ t !&

1others

5
1

N (
n

^wn11~ t !wn1m11~ t !&^ f n11~ t ! f n1m11~ t !&

1others. ~10!

To obtain the second line of Eq.~10! we have used Eq.~1!.
Four terms result; we have written only one for illustratio
To obtain the third line it is crucial to observe thatwn(t)
depends only on fractions in the layers above. It is not c
related with the fractions in layert, allowing us to factorize
the average as shown.

To perform the average we need information about
distribution P( f ). By symmetry for any choice of distribu
tion

^ f &5E
0

1

d f f P~ f !5
1

2
. ~11!

For the variance we write

K S f 2
1

2D 2L 5
e

4
, ~12!

where e is a parameter that characterizes the distribut
P( f ). For example,e51/3 for the uniform distribution. For
the singular distribution the parameter takes its maxim
possible valuee51. Since the fractions for different bead
are assumed to be independently distributed we conclud

^ f n~ t1! f m~ t2!&5
1

4
1

e

4
dn,md t1 ,t2

. ~13!

Substituting Eq.~13! in Eq. ~10! we obtain

cm~ t11!5S 1

4
1

e

4
dm,0D cm~ t !1others

5S 1

2
1

e

2
dm,0D cm~ t !1S 1

4
2

e

4
dm,2D cm22~ t !

1S 1

4
2

e

4
dm,22D cm12~ t !. ~14!
7-4
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DYNAMICS AND CRITICAL BEHAVIOR OF THE q MODEL PHYSICAL REVIEW E 64 026107
In the second line of Eq.~14! the other terms have bee
unveiled. Recall thatm takes even integer values. It is co
venient to replacem→m/2 to obtain

cm~ t11!5S 1

2
1

e

2
dm,0D cm~ t !1S 1

4
2

e

4
dm,1D cm21~ t !

1S 1

4
2

e

4
dm,21D cm11~ t !. ~15!

Equation~15! is the main result of this section. It govern
the evolution of the correlation function. We wish to solve
subject to the initial condition

cm~ t→0!51 for all m. ~16!

The initial condition follows from the definition ofcm @Eq.
~8!# and the assumed uniform load on the top layer. Note
the distribution P( f ) enters the evolution equation on
through the parametere. Since the parameter takes its max
mum valuee51 for the singular distribution we may defin

d512e ~17!

as the distance of a distributionP( f ) from the critical point.

B. Scattering solution

It is easy to verify that a steady state solution to Eq.~15!
is

c05
1

12e
,

cn51 for nÞ0. ~18!

Assuming this is the unique steady state towards which
initial condition evolves, Eq.~18! reveals that the varianc
does diverge as the singular distribution is approached.
ing Eq. ~9!

^d2w~ t→`!&5
e

12e

'
1

d
as e→1. ~19!

Comparing Eq.~5! we see that the exponentu51. Equation
~18! also reveals that in steady state the fluctuations in l
are uncorrelated for all pairs of beads including neighbo
This is in agreement with experiment@12#.

A full solution of evolution dynamics needs more wor
Schematically Eq.~15! states

c~ t11!5Hc~ t !. ~20!

The strategy we adopt here is to seek the eigenvectors oH,

Hfl5lfl, ~21!

and to expand the initial correlation vectorc(0) in terms of
the eigenvectors,
02610
at
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d
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c~0!5(
l

alfl. ~22!

The correlation vector at deptht is then

c~ t !5(
l

l talfl. ~23!

A complication we must negotiate is thatH is non-
Hermitian. According to the standard theory of biorthogon
expansion~briefly recounted in Appendix A! to execute the
plan above we mustprovethat the eigenvectors ofH span the
vector space. Then we must find the eigenvectors ofH†,
called the left eigenvectors ofH in this context. The eigen-
values ofH† are the complex conjugate of the eigenvalues
H. Thus

H†cl5l* cl, ~24!

wherecl denotes the left eigenvector with eigenvaluel* .
Having completed these tasks we may write the comple
ness relation

(
l

~cm
l !* fn

l5dmn . ~25!

Using Eq.~25! we conclude that the expansion coefficien
in Eq. ~22! are determined by the left eigenvectors,

al5(
m

~cm
l !* cm~0!. ~26!

Implementing the plan we first write the eigenvalue equ
tion for H

1

2
f r

l1
1

4
f r 11

l 1
1

4
f r 21

l 5lf r
l for ur u>2,

1

2
f21

l 1
1

4
f22

l 1
12e

4
f0

l5lf21
l ,

~27!

11e

2
f0

l1
1

4
f21

l 1
1

4
f1

l5lf0
l ,

1

2
f1

l1
12e

4
f0

l1
1

4
f2

l5lf1
l .

Note that fore50 Eq.~27! may be interpreted as the Schr¨-
dinger equation for a free particle on a tightbinding lattic
familiar from elementary solid state physics. For nonzeroe
the particle may be viewed as scattering off a~non-
Hermitian! barrier at the origin. Thus we seek a solution
the scattering form

fn
(1)k5T~k!eikn for n>1,

5A~k! for n50,

5eikn1R~k!e2 ikn for n<21. ~28!
7-5
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Here 0,k,p. The first line of Eq.~27! then yields the
eigenvalue

l~k!5
1

2
1

1

2
cosk. ~29!

The next three lines yield the scattering coefficients

A~k!5
i sink

~12e!eik1e2cosk
,

T~k!5~12e!A~k!, ~30!

R~k!5~12e!A~k!21.

There are also scattering solutions to Eq.~27! corresponding
to the fictitious particle coming in from the right

fn
(2)k5e2 ikn1R~k!eikn for n>1,

5A~k! for n50,

5T~k!e2 ikn for n<21. ~31!

By symmetry the scattering coefficients for this state are a
given by Eq.~30!.

There are no bound state solutions to Eq.~27!. The scat-
tering solutions we have found all have real eigenvalues
principle, sinceH is non-Hermitian, complex eigenvalues a
also possible. However, it turns out there are no soluti
with complex eigenvalue that are biorthonormalizable. It w
be seen that the scattering solutions we have found const
a complete set.

The next step is to find the left eigenvectors that obey

1

2
c r

l1
1

4
c r 11

l 1
1

4
c r 21

l 5lc r
l for ur u>2,

1

2
c21

l 1
1

4
c22

l 1
1

4
c0

l5lc21
l ,

~32!

11e

2
c0

l1
12e

4
c21

l 1
12e

4
c1

l5lc0
l ,

1

2
c1

l1
1

4
c0

l1
1

4
c2

l5lc1
l .

Equation~32! is the transpose of Eq.~27!. The left eigenvec-
tors are

cn
(1)k5T ~k!eikn for n>1,

5A~k! for n50,

5eikn1R~k!e2 ikn for n<21 ~33!

and
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(2)k5e2 ikn1R~k!eikn for n>1,

5A~k! for n50,

5T ~k!e2 ikn n<21. ~34!

The scattering coefficients are given by

A~k!5
i ~12e!sink

~e2cosk!1~12e!eik
,

T ~k!5A~k!, ~35!

R~k!5A~k!21.

Having found the left and right eigenvectors, by analo
with Eq. ~25!, we now posit the completeness relation

E
0

p dk

2p
~cm

(1)k* fn
(1)k1cm

(2)k* fn
(2)k!5dmn . ~36!

The proof of this completeness relation, an important e
ment of the analysis, is carried out in Appendix A.

The expansion of the initial correlation vector indicat
schematically in Eq.~22! may now be written

cm~0!5E
0

p dk

2p
@a(1)~k!fm

(1)k1a(2)~k!fm
(2)k#. ~37!

The correlation vector at deptht is now

cm~ t !5E
0

p dk

2p
l~k! t@a(1)~k!fm

(1)k1a(2)~k!fm
(2)k#

~38!

as previously shown schematically in Eq.~23!.
The expansion coefficientsa(k), obtained using the com

pleteness relation@Eq. ~36!#, are

a(1)~k!5 (
n52`

1`

cn~0!cn
(1)k* ,

a(2)~k!5 (
n52`

1`

cn~0!cn
(2)k* , ~39!

as previously indicated schematically in Eq.~26!. To ensure
convergence of the sums in Eq.~39! we setcm(0)→e2humu

and takeh→0 at the end. Using Eqs.~33!, ~34!, and~35! we
perform the sums exactly to obtain

a(1)~k!5a(2)~k!

5A~k!* 12A~k!*
e2 ik2h

12e2 ik2h
1S eik2h

12eik2h
2ccD

52pA~k!* d~k!1@12A~k!* # i cot
k

2
. ~40!

The last line of Eq.~40! is obtained by taking the limith
→0.
7-6
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Substituting Eq.~40! in Eq. ~38! and making use of Eqs
~28!, ~29!, ~30!, ~31!, and~35! we finally obtain

c0~ t !5
1

12e
2

e

pE0

p

dk
cos2(t11)~k/2!

e22~2e21!cos2 k
. ~41!

Equation ~41! is the exact expression for the evolution
c0(t) that we sought.

Finally we would like to reexpress Eq.~41! in terms of
standard special functions. Some of the manipulations
prove useful later in the analysis of injection. Introduce thz
transform

c0~z!5(
t50

`

ztc0~ t !5
1

12e

1

12z

2
e

pE0

p

dk
cos2~k/2!

e22~2e21!cos2~k/2!

1

12z cos2~k/2!
.

~42!

The k integral may now be performed2 to yield

c0~z!5
1

~12e!~12z!
2

e2

~12e!~2e21!„12a~e!z…

2
e

~122e!A12z„12a~e!z…
. ~43!

For brevity a(e)5e2/(2e21). Upon inversion of thez
transform~details relegated to Appendix B! we obtain

c0~ t !5
1

12e
2

1

peE1

`

dx~x21!21/2
1

xt11 S x2
2e21

e2 D 21

.

~44!

Comparing an integral representation for the hypergeome
function @27#

F~a,b,c;s!5
G~c!

G~c2b!G~b!
E

1

`

dx~x21!c2b21

3xa2c~x2s!2a, ~45!

valid for Rec.Reb.0 andusu,1, we conclude

^dw2~ t !&5
e

12e
2

1

pe

G~1/2!G~ t13/2!

G~ t12!

3FS 1,t13/2,t12;
2e21

e2 D . ~46!

2Extend the range from 0 to 2p. Then use the standard trick fo
turning an angular integral into a contour integral around the u
circle in thez plane via the substitutionz→eik. See, for example,
@27#, p. 409.
02610
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Equation~46! is the final result of this section. It is an exa
formula for the evolution of fluctuations with depth, in term
of known special functions. As a practical matter Eqs.~41!
and ~44! are equivalent to Eq.~46! and will prove more
useful.

C. Scaling limit

Equation~46! gives the exact evolution of load fluctua
tions for theq model without injection. It is valid for allt and
all distributions,P( f ). From our point of view however it is
more interesting to examine the scaling limit of large dep
behavior near the critical point.

To derive the scaling limit we start with Eq.~44!—Eq.
~41! would have served just as well—and consider the lim
t@1 and d512e→0. We do not make any assumptio
about the relationship betweent and 1/d. We obtain

^d2w~ t !&'
1

d
2

1

pE0

`

ds s21/2e2t ln(11s)~s1d2!21

'
1

d
2

1

pE0

`

ds s21/2e2ts~s1d2!21. ~47!

In the first line of Eq.~47! we have changed the integratio
variable fromx to s5x21. Again changing the integration
variable froms to s̄5s/d2 we obtain

^d2w~ t !&5
1

d F12
2

pE0

`

ds̄
e2 s̄2td2

11 s̄2 G . ~48!

Comparing Eq.~7! we conclude that close to the critica
point and in the large depth limit^d2w(t)& does indeed have
a scaling form with exponents

u51, w52 ~49!

and scaling function

F~u!512
2

pE0

`

ds
e2us2

11s2
. ~50!

it

FIG. 4. The scaling functionF(u) describes the growth of load
fluctuations with depth for the 111 dimensionalq model close to
the critical point@see Eqs.~7! and ~50!#. Injection is neglected.
7-7
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Figure 4 shows a plot ofF(u). As anticipated the asymptoti
behavior of the scaling function is

F~u!'12
1

Apu
for u→`

'
2

Ap
Au for u→0. ~51!

We conclude that the saturation depth scalejcorr;1/d2. For
very great depthst@jcorr, the fluctuations saturate to th
value 1/d as found earlier by analysis of the steady state@Eq.
~19!#. For small depths, 1!t!jcorr they grow as

^d2w~ t !&5
2

Ap
At. ~52!

This behavior must persist at all depths right at the criti
point as will be explicitly confirmed in Sec. III.

In summary, we have shown that the singular distribut
is an isolated critical point in the space ofq models. There is
a ~vertical! correlation length that diverges as the critic
point is approached. We have determined the exponenu
andw and the scaling functionF(x) introduced in Eqs.~5!,
~6!, and~7!. In context of river networks we have found th
any q model with stream splitting~hence nonzerod) has a
~possibly very long! correlation length in the direction o
flow. Such a network is therefore not scale invariant on s
ficiently long scales.3

III. CRITICAL POINT DISTRIBUTION

Right at the critical point in 111 dimensions it is pos-
sible to analyze the dynamics of the entire distributi
P(w,t). Since there is no vertical length scale at the criti
point we expect that in the large depth, scaling limit

P~w,t !5
1

tv
H~wtY!. ~53!

Equation~53! implies that at the critical point the varianc
should grow ast23Y2v in the scaling limitt@1. From Eq.
~7! we had surmized that the variance would grow astu/w for
d50. Hence the exponentsu,w of the preceding section an
v,Y of this section are not independent; they satisfy
relation 3Y1v1u/w50. Below we calculate the exponen
v andY, explicitly verify the exponent relationship and ob
tain the scaling functionH(s).

Again as an aside to experts we note that the exponenv
and Y might more naturally have been writtenv
→t/nzs, Y→21/nzs. These expressions follow from th

3Strictly, to analyze a river network the appropriate initial con
tion is to load a fraction of randomly chosen sites in thet50 layer,
rather than the uniform load analyzed here. However we do
expect our conclusion regarding correlation lengths is sensitiv
initial conditions.
02610
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d→0 limit of the more general scaling hypothesis for t
entire distribution close to the critical point@Eq. ~174!#.
However for this section we have elected to make the m
restricted hypothesis, Eq.~53!, and to give the exponent
single character names.

In this section too we neglect injection. At the critic
point injection is a relevant perturbation. The form we deri
is therefore a transient that will break down at sufficie
depth. Provided the injection is weak however that de
could be very great.

Majumdar and Sire@28# have analyzed the scaling limit o
P(w,t) when injection is present; however it does not a
pear straightforward to take the injection→0 limit in their
expression. It would also be desirable for the case of n
zero injection to have a simple explicit formula for the cros
over ofP(w,t) from the transient we derive@Eq. ~53!# to the
injection dominated, large depth limit. Presumably this c
be accomplished by extracting the suitable limit of the resu
of Ref. @28#, or by direct calculation, but we do not attempt
here. The case of zero injection has also been previo
analyzed by Majumdar and Huse in a continuum time mod
Their results are in agreement with the scaling limit of o
exact expression@29#.

A. Disorder average

As in Sec. II we assume a uniform load is applied to t
top layer@Eq. ~2!#. To obtain the distributionP(w,t) follow-
ing Ref. @3# we consider the quantities

Zr~r,t !5K expir (
n51

r

wn~ t !L , ~54!

wherer 51,2,3, . . . . By translational invariance

Z1~r,t !5^expirw1~ t !&

5 (
w50

`

eirwP~w,t !. ~55!

Note that for the criticalq model without injection the load
on a site is an integer. ThusZ1(r,t) is the discrete Fourier o
z transform of the distributionP(w,t); r is the transform
domain variable conjugate tow. Z2(r,t) similarly encodes
the joint probability distribution of load on neighboring site
and so on.

For the business at hand the imaginary part ofZr(r,t),

Zr~r,t !5Im Zr~r,t ! ~56!

is especially valuable. It is evident from Eq.~55! that

Z1~r,t !5 (
w50

`

sin~rw!P~w,t !. ~57!

By using Fourier’s identity

2

pE0

p

dk sinkn sinkm5dmn ~58!

ot
to
7-8
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and Eq.~57! we can extract the distributionP(w,t) from
Z1(r,t) via

P~w,t !5
2

pE0

p

dr sin~rw!Z1~r,t ! ~59!

for w51,2,3, . . . . Wecannot obtainP(w50,t) in this way
from Z1(r,t), but we can obtain it from the normalization o
P(w,t);

P~w→0,t !512 (
w51

`

P~w,t !. ~60!

The benefit of considering the quantitiesZr(r,t) is that
they obey a simple linear evolution equation. Following R
@3# write

Zr~r,t11!5K expir (
n51

r

wn~ t11!L
5K expirH w1~ t ! f 1~ t !1 (

n52

r

wn~ t !

1wr 11~ t !@12 f r 11~ t !#J L . ~61!

To obtain the second line we have used theq-model evolu-
tion Eq. ~1!. Since the weights in layert depend only on
fractions in the preceding layers we can perform the aver
over f 1(t) and f r 11(t) separately in Eq.~61!:

^expirw1~ t ! f 1~ t !& f 1
5

1

2
@11expirw1~ t !#,

^expirwr 11~ t !@12 f r 11#& f r 11
5

1

2
@11expirwr 11~ t !#.

~62!

Substituting Eq.~62! in Eq. ~61! we obtain the evolution
equation

Zr~r,t11!5
1

4
Zr 21~r,t !1

1

2
Zr~r,t !1

1

4
Zr 11~r,t !,

~63!

where we have again made use of horizontal translatio
invariance.

Note that Eq.~63! is linear. Hence it is obeyed separate
by the real and imaginary parts ofZ. Z therefore evolves
according to

Zr~r,t11!5
1

4
Zr 21~r,t !1

1

2
Zr~r,t !1

1

4
Zr 11~r,t !.

~64!

Equation~64! is reminiscent of a tight-binding lattice Schro¨-
dinger equation for a free particle on a half line~since the
site indexr>1).
02610
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The main results of this subsection are Eqs.~57! and~59!
that define the relationship betweenP(w,t) andZ1(r,t) and
Eq. ~64! that controls the evolution ofZr(r,t) with depth.

B. Solution and scaling limit

We wish to solve Eq.~64! subject to the initial condition

Zr~r,t→0!5sinrr . ~65!

This follows from the assumed uniform load applied to t
top layer and Eqs.~54! and~56!. Schematically, Eq.~64! has
the form

Zr~r,t11!5(
s

HrsZs~r,t !. ~66!

It is easy to verify that our initial condition is an eigenfun
tion of H;

(
s

Hrs sinrs5S 1

2
1

1

2
cosr D sinrr . ~67!

Hence Eq.~64! has the remarkably simple solution

Zr~r,t !5S 1

2
1

1

2
cosr D t

sinrr . ~68!

Substituting Eq.~68! in Eq. ~59! we obtain the desired ex
pression for

P~w,t !5
2

pE0

p

dr sin~rw!S 1

2
1

1

2
cosr D t

sinr ~69!

for w51,2,3, . . . .
The integral overr can be performed exactly by a sta

dard contour integration trick~see footnote 2! to yield

P~w,t !5
1

4t

~2t !!

~ t112w!! ~ t211w!!

2
1

4t

~2t !!

~ t212w!! ~ t111w!!

for w51,2, . . . ,t21

5
1

4t

~2t !!

~ t112w!! ~ t211w!!

for w5t,t1150 for w.t11. ~70!

We now use Eqs.~60! and ~70! to obtainP(w→0,t). The
sum proves tractable and yields

P~w→0,t !512
1

4t

~2t11!!

~ t11!! t!
. ~71!

Equations~70! and~71! are the exact expressions forP(w,t)
for the criticalq model without injection.
7-9
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Much more interesting than the exact formula is the sc
ing limit of large depth. We now assumet@1 but we will
make no assumptions about the relative size ofw and t. To
derive this limit we return to Eq.~69! and write

S 1

2
1

1

2
cosr D t

'e2tr2/4 ~72!

justified ~inside the integral! for large t. Hence we obtain a
Gaussian integral

P~w,t !5
1

pE2p

p

dr sin~rw!re2tr2/4

5
4

Ap

w

t3/2
e2w2/t. ~73!

Comparing Eqs.~53! and ~73! we see that at large depthP
has the anticipated scaling form with exponents

v51, Y52
1

2
~74!

and scaling function

H~s!5
4

Ap
se2s2

. ~75!

Equation ~73! holds for w>1. In the same large dept
limit

P~w→0,t !'12
2

Ap

1

At
. ~76!

The distribution of load thus consists of a spike at zero lo
followed by smooth behavior for nonzero load given by E
~73!. At great depths it is extremely probable that the load
a given bead is zero; most of the weight of the distribution
in the spike.

From the distribution of load, Eq.~73!, it is easy to con-
firm that its variance@Eq. ~4!# grows without bound as the
square root of depth, as we had earlier inferred from
scaling functionF @cf. Eq. ~52!#.

It is instructive that the exact formula, Eqs.~70! and~71!,
is so cumbersome; the scaling limit, Eqs.~53!, ~74!, and~75!,
emerges only when we plumb the depths.

IV. EFFECT OF INJECTION

In this section we consider theq model in 111 dimen-
sions taking into account injection. We will assume that
weights of the beads are independent and identically dis
uted with mean̂ I & and variancêdI 2&. To probe the behav
ior of the model we will assume that a uniform load is a
plied to the top layer@Eq. ~2!#. We will study how the mean
square load̂w2(t)& evolves with depth since the mean loa
has the trivial variation

^w~ t !&511^I &t. ~77!
02610
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Near the critical point we expect that the mean square l
should have a scaling form

^w2~ t !&5
1

du
C~ tdw,^dI 2&d2m,^I &d2k!. ~78!

We can guess all the exponents and obtain some feat
of the scaling function from simple arguments. The load o
particular bead at deptht is a random linear combination o
the weights of the beads in the layer above plus a term,
to the applied load, that does not depend on the weights,I n .
Hence the scaling function has to be of the form

^w2~ t !&5
1

du
F~ tdw!1

^dI 2&

du1m
M~ tdw!1

^I &

du1k
K~ tdw!

1
^I &2

du12k
L~ tdw!. ~79!

In the limit of zero injection Eq.~79! should reduce to our
result in Sec. II. Thus

u51, w52 ~80!

andF has the same form@Eq. ~50!# as in Sec. II justifying
the recycling of these particular symbols.

By rewriting the average weight at deptht @Eq. ~77!# as
11td2^I &/d2 we conjecture

k52. ~81!

To obtainm we imagine that the system is very close
the critical point. Then for times that are not too long, effe
tively, it will behave as it would right at the critical point. A
that point the weight of each bead zigzags down lines t
merge but do not split. If we add the squares of the loads
all the beads on layert we will obtain the sum, over all the
beads above layert, of their squared deviation from the av
erage weight ^I & plus other terms. Hencê(nwn(t)2&
5^dI 2&Nt1 other pieces that do not depend on^dI 2&. Here
N is the number of beads in a layer. By translational inva
ance we conclude

^w2~ t !&'^dI 2&t1~others!. ~82!

In Eq. ~82! ‘‘others’’ represents contributions tôw2(t)& that
do not depend on̂dI 2&. Comparing Eqs.~82! and ~79! we
see that for small values of its argument

M~u!'u ~83!

and the exponent

m51, ~84!

needed to cancel thed dependence at small depths.
With the exponents in hand we can analyze the beha

of ^w2(t)& at small depths~compared to 1/d2). This behavior
would persist out to all depths right at the critical point. F
the term independent of injection we have already obtai
the exact result, Eq.~52!. For the term that depends on^dI 2&
7-10
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we have just worked out the behavior in this limit, includin
the precise coefficient@Eq. ~82!#. For the term that is propor
tional to ^I & we argue that for smallu, K(u);u3/2 to cancel
the d dependence, leading to

^w2~ t !&;^I &t3/21~others!. ~85!

Similarly the contribution of the term that is proportional
^I &2 is

^w2~ t !&;^I &2t5/21~others!. ~86!

The last result has a simple interpretation. We have s
in Sec. II that without injection at the critical point the mea
weight at deptht is 1; the mean square weight;At. With
injection the average weight at sufficient depth is'^I &t. If
we assume that uniform injection does not change the di
bution, only its scale, then since the mean is inflated b
factor ^I &t, the mean square should be inflated by a fac
^I &2t2, leading to Eq.~86!. The same interpretation can b
used to derive the behavior of the last term in Eq.~79! in the
limit t@1/d2, the opposite of the limit we have so far co
sidered. In that limit, in the absence of injection, the fluctu
tions saturate at the value 1/d. Hence we expect this term t
behave as

^w2~ t !&;
1

d
^I &2t2. ~87!

We can check some of these deductions by making c
tact with Majumdar and Sire, who have analyzed the en
distribution of load at the critical point@28#. Following these
authors let us imagine that the injection term is very sm
with the squared mean̂I &2, significantly smaller than the
variancê dI 2&. According to our analysis ultimately the fluc
tuations at the critical point should grow ast5/2, but the depth
at which thet5/2 term @Eq. ~86!# overtakes the term linear in
t @Eq. ~82!# could be very great; it diverges as 1/^I &4/3. Ma-
jumdar and Sire arrived at the same value 4/3 for this cro
over exponent. Moreover, since they argued that right at
critical point ~the only case they considered! there is only
one independent exponent, we have made contact with
entire analysis as regards exponents.

In summary we anticipate that near the critical point t
mean square load will follow the scaling form@Eq. ~78!#.
Using simple arguments we have conjectured values for
the exponents@Eqs. ~80!, ~81!, and ~84!# and guessed som
features of the scaling function. As a check we have m
contact with the critical point analysis of Majumdar and S
and recovered the known value of the crossover expon
4/3 @28#. In the remainder of this section we will fully con
firm the deductions we have made above. We will obtain
exact formula for the evolution of the mean square load;
exponents,u, w, m, andk; and the scaling functionC.

A. Disorder average and exact solution

As in Sec. II our strategy is to analyze the evolution of t
correlation function cn(t); the mean-squared weigh
^w2(t)&5c0(t). The analysis is given in outline since mo
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of the needed technical elements have already been desc
in Sec. II. Here we shall focus on the new complicatio
introduced by consideration of injection.

Following the method of Sec. II B we first obtain the ev
lution equation for the correlation function, now includin
injection. Schematically this equation has the form

cm~ t11!5(
n

Hmncn~ t !1jm~ t !, ~88!

whereHmn is the same matrix as in Eq.~15!. The effect of
injection appears in the inhomogeneous termjm . Explicitly

jm52^I &1~2t11!^I &21^dI 2&dm50 . ~89!

Our strategy to solve Eq.~88! is to first expandc(t) and
j(t) in terms of the right eigenvectors ofH,

cm~ t !5(
l

al~ t !fm
l ; jm~ t !5(

l
jl~ t !fm

l . ~90!

As discussed before, the expansion amplitudesal andjl are
calculated by use of the left eigenvectors

al~ t !5(
m

~cm
l !* cm~ t !; jl~ t !5(

m
~cm

l !* jm~ t !.

~91!

In Sec. II B we have calculated the amplitudes forcm(t
→0). We found a(1)(k,t→0)5a(2)(k,t→0)[a(k,t→0)
with

a~k,t→0!52pA~k!* d~k!1@12A~k!* # i cot
k

2
.

~92!

Here A(k) is given by Eq. ~35!. Similarly j (1)(k,t→0)
5j (2)(k,t→0)[j(k,t→0) with

j~k,t !5^dI 2&A~k!* 1$2^I &1~2t11!^I &2%H 2pA~k!* d~k!

1@12A~k!* # i cot
k

2J . ~93!

Substituting the expansions Eq.~91! into the evolution
Eq. ~88! shows that the dynamics of the amplitudes for d
ferent right eigenvectors is decoupled and is given by

al~ t11!5lal~ t !1jl~ t !. ~94!

To solve this dynamics we introduce thez transforms

al~z!5(
t50

`

al~ t !zt,

jl~z!5(
t50

`

jl~ t !zt, ~95!

to obtain
7-11
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al~z!5
al~ t→0!

12zl
1

zjl~z!

12zl
. ~96!

Combining Eqs.~90! and ~96! we conclude

cm~z!5(
l

Fal~ t→0!

12zl
1

zjl~z!

12zl Gfm
l . ~97!

More explicitly

c0~z!52E
0

p

dk
a~k,t→0!A~k!

12zl~k!
12zE

0

p

dk
j~k,z!A~k!

12zl~k!
.

~98!

Herec0(z) is thez transform ofc0(t); A(k) is given by Eq.
~30!; l(k), by Eq.~29!; anda(k,t→0), by Eq.~92!. j(k,z)
is to be obtained byz transforming Eq.~93!.

Now all the pieces have been assembled. It remain
perform thek integral and invert thez transform. Thek inte-
grals may be performed by the standard contour integra
method mentioned in footnote 2. Thez transforms can all be
inverted as illustrated in Appendix B.

After much calculation we find

^w2~ t !&5F̄~ t,e!1^dI 2&M ~ t,e!1^I &K~ t,e!1^I &2L~ t,e!
~99!

with

F̄~ t,e!5
e

12e
2

1

pe
GF1 ,

M ~ t,e!52
e

~12e!2
1

2

p

~12e!

e2
G@ tF11F2#,

~100!

K~ t,e!5
2

12e
t1

2e2

~12e!3
2

4

pe
G@ tF11F2#,

L~ t,e!5
e412e32e2

~12e!5
1

2e2

~12e!3
t1

2

3pe
G@~4t22t !F1

1~8t25!F218F3#.

We have put an overline onF̄(t,e) to avoid confusion with a
hypergeometric function. For brevity we have written

G5
G~1/2!G~ t13/2!

G~ t12!
,

Fn5FS n,t1
3

2
,t12;

2e21

e2 D ~101!

in Eq. ~100!.
Equations~100! is the final result of this section. It give

the evolution of load fluctuations for theq model with injec-
tion in 111 dimensions. It holds for any distribution of frac
tions P( f ) and at any depth.
02610
to

n
B. Scaling limit

More interesting than the exact results is the scaling
havior that emerges fort@1 andd512e→0. To derive this
behavior it is useful to express the hypergeometric functi
in Eq. ~100! via the integral representation, Eq.~45!. The
asymptotic behavior ofGF1 has been analyzed in Sec. II
@cf. Eqs.~47! and ~48!#. The corresponding analysis ofGF2
andGF3 is very similar and finally leads to

F̄~ t,e!→ 1

d H 12
2

p
F1~u!J ,

M ~ t,e!→ 1

d2 H 211
4

p
uF1~u!1

4

p
F2~u!J ,

~102!

K~ t,e!→ 1

d3 H 2u122
8u

p
F1~u!2

8

p
F2~u!J ,

L~ t,e!→ 1

d5 H 212u1u22
16

3p
@u2F1~u!12uF2~u!

12F3~u!#J .

Hereu5td2. For brevity we have written

Fn~u!5E
0

`

ds
e2us2

~11s2!n
. ~103!

Comparing Eqs.~79! to ~102! we conclude that the expo
nents areu51, w52, k51, andm51 as conjectured. It is
also straightforward to extract the scaling functionsF(u),
M(u), K(u), andL(u) from Eq. ~102!. The scaling func-
tions are plotted in Figs. 4, 5, 6, and 7, respectively.

The asymptotics of the integralsFn(u) are analyzed in
Appendix C. Using those results we conclude that for smau

FIG. 5. Growth of load fluctuations with depth for the 111
dimensionalq-model close to the critical point. The scaling functio
M(u) gives the contribution due to fluctuations in the weight
beads@Eqs.~79! and~102!#. HereM(u)/Au is plotted as a function
of u.
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F~u!'
2

Ap
u1/2,

M~u!'u,
~104!

K~u!'
8

3Ap
u3/2,

L~u!'
16

15Ap
u5/2.

For largeu

F~u!'1,

M~u!'
2

Ap
Au, ~105!

K~u!'2u,

FIG. 6. Growth of load fluctuations with depth for the 111
dimensionalq model close to the critical point. The scaling functio
K(u) gives a contribution proportional to the average weight
beads@Eqs.~79! and~102!#. HereK(u)/u is plotted as a function of
u.

FIG. 7. Growth of load fluctuations with depth for the 111
dimensionalq model close to the critical point. The scaling functio
L(u) gives a contribution proportional to the square of the aver
weight of beads@Eqs.~79! and~102!#. HereL(u)/u2 is plotted as a
function of u.
02610
L~u!'u2.

Substituting the smallu asymptotics in Eq.~79! we obtain
the behavior for depths small compared to 1/d2.

^w2~ t !&'
2

Ap
t1/21^dI 2&t1^I &

8

3Ap
t3/21^I &2

16

15Ap
t5/2.

~106!

This behavior would persist for all depths right at the critic
point. Note that Eq.~106! agrees with the forms conjecture
in Eqs. ~82!, ~85!, and ~86! ~including the numerical coeffi-
cient in the first case!. It is hardly necessary to add that E
~106! is consistent with the critical point analysis of Majum
dar and Sire since it leads, by the arguments given earlie
this section, to their crossover exponent 4/3@28#.

The largeu asymptotics give the behavior at depths lar
compared to 1/d2. We find

^w2~ t !&5
1

d
1^dI 2&

1

d

2

Ap
t1/21^I &

1

d
2t1^I &2

1

d
t2.

~107!

The term proportional tôI &2 has the form anticipated in Eq
~87!; at the greatest depths this term is dominant.

In summary we have shown that the singular distribut
is an isolated critical point. Near the critical point the flu
tuations in load have the scaling form Eq.~79!. We have
derived this scaling form and all the exponents. The res
are in agreement with expectations based on simpler~non-
rigorous! arguments.

V. HIGHER DIMENSIONS

We now turn to theq model in D11 dimensions. The
quantum Hall multilayer and river networks are both 111
dimensional systems; bead packs however are describe
the 211 dimensionalq model. The behavior of the model a
a function ofD is of intrinsic interest moreover. We will find
that right at the critical point the growth exponents va
smoothly with dimension forD,2. Above D52 they be-
come fixed, revealingD52 as the upper critical dimensio
for the critical case. Off the critical point we expect the flu
tuations to grow according to a scaling functionF(x) @Eq.
~7!#. We will study how the function and exponents vary wi
dimensionality belowD52. For simplicity in this section we
neglect injection.

A. Model and disorder average

First we must generalize the description of theq-model,
so far confined to 111 dimensions. The case of 211 dimen-
sions is easy to visualize. Figure 8 illustrates a square lat
composed of two interpenetrating square sublattices. The
ordinates of sitesnW 5(n1 ,n2) are both even for the black
sites; both odd for the gray. The displacements from a site
either sublattice to its four nearest neighbors on theother
sublattice are (61,61). We will denote these displacemen
uW . In the q model planes of such square lattices are stac

f

e

7-13



d

d
n

e

c

ac
e

he

f

b
to

of

tly

x-
2

ll

the

n

r

t of

site

s.

t

MARTA LEWANDOWSKA, H. MATHUR, AND Y.-K. YU PHYSICAL REVIEW E 64 026107
vertically. The beads alternately occupy only even or o
sublattices. Denoting the depth of a layert, for t even only
the even sublattice is occupied; fort odd, only the odd sub-
lattice. Viewed in three dimensions the beads occupy a bo
centered cubic structure. In the same sense, Fig. 1 ca
viewed as a body-centered square structure.

Now consider aD dimensional simple cubic lattice. Th
co-ordinates of a site are specified bynW 5(n1 ,n2 , . . . ,nD)
whereni are integers. For the even sublattice theni are even;
for the odd sublattice, they are odd. Each site has 2D nearest
neighbors on the other sublattice. We denote the displa
ments (61,61, . . . ,6) to these neighborsuW . TheD11 di-
mensionalq model consists ofD dimensional cubic lattices
stacked in the ‘‘vertical’’t direction. In alternatet slices only
the even or odd sublattices are occupied by beads.

It is assumed that a random fraction of the load on e
bead is supported by its 2D neighbors in the layer below. Th
fractions must sum to one;

(
uW

f uW51. ~108!

Here f uW is the fraction of load transmitted by the bead to t
neighbor separated by a horizontal displacement ofuW . Hence
the dynamics of theq model is governed by

w~nW ,t11!5(
uW

f uW~nW 2uW ,t !w~nW 2uW ,t !. ~109!

Equation ~109! is the D11 dimensional generalization o
Eq. ~1!.

The fractions for a particular bead are assumed to
drawn from a distribution that is symmetric with respect
direction and respects the constraint Eq.~108!. It follows

FIG. 8. Horizontal slice through the 211 dimensionalq model.
Beads occupy the even~black! or odd~gray! sublattice in alternate
layers. Each bead is supported by its four nearest neighbors in
layer below.
02610
d

y-
be

e-

h

e

^ f uW&5
1

2D
. ~110!

We write

^ f uW
2
&5

1

22D
1

e

22D
, ~111!

wheree is a parameter that characterizes the distribution
fractions. From the sum constraint Eq.~108! it follows

^ f uW 1
f uW 2

&5
1

22D
2

e

~2D21!

1

22D
~112!

for uW 1ÞuW 2. The fractions are assumed to be independen
and identically distributed for different beads.

For the singular distribution all the fractions are zero e
cept one. The probability for each fraction to be one is 1/D.
It is easy to calculatee52D21 for the singular distribution
using Eq.~111! and to verify Eqs.~110! and ~112! are satis-
fied. Sincee52D21 for the singular distribution we sha
used, defined by

d512
e

~2D21!
, ~113!

as our measure of the distance of a distribution from
critical point.

As before it is useful to consider the correlation functio

c~mW ,t !5(
nW

^w~nW ,t !w~nW 1mW ,t !&. ~114!

Note thatmW is a D dimensional vector with even intege
entries for botht even andt odd. The correlation function
therefore lives on a simple cubic lattice inD dimensions. By
rescaling, as in Sec. II A, we reduce the lattice constan
this lattice to one so that the components of the vectormW are
now integers. The variance in load is related to the on-
correlation by

^dw2~ t !&5c~mW →0,t !21. ~115!

Following the discussion of Sec. II A and using Eq
~109!, ~110!, ~111!, and ~112! it is easy to show that the
correlation function evolves with depth according to

~116!c~mW ,t11!5
1

2D
c~mW ,t !1

1

2D11 (
bW 5nn

c~mW 1bW ,t !

1
1

2D12 (
bW 5nnn

c~mW 1bW ,t !1•••

1
1

22D (
bW 5n . . . n

c~mW 1bW ,t !1
e

2D
c~mW ,t !dmW 50

he
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2
e

~2D21!

1

2D11 (
bW 5nn

c~mW 1bW ,t !dmW 1bW 50

2
e

~2D21!

1

2D12 (
bW 5nnn

c~mW 1bW ,t !dmW 1bW 50•••

2
e

~2D21!

1

22D (
bW 5n . . . n

c~mW 1bW ,t !dmW 1bW 50 .

While reading Eq.~116! it is useful to recall that the corre
lation function lives on aD dimensional cubic lattice. Fo
D52 each site has four nearest neighbors and four n
nearest neighbors. For generalD, each site has 2D nearest
neighbors; 22C(D,2) next nearest neighbors; 23C(D,3)
third nearest neighbors; and 2DC(D,D) Dth nearest neigh-
bors. In Eq.~116! bW denotes the displacement from a site
any of these neighbors; nn denotes nearest neighbor;
next nearest; and so forth.

In the next section we will solve Eq.~116! for c(mW
→0,t) subject to the initial condition that a uniform load h
been applied to the top layer. Thusc(mW ,t→0)51 for all mW .

B. Solution

It is easy to verify that

c~mW ,t→`!5H 1

d
for mW 50

1 otherwise

~117!

is a steady state solution to Eq.~116!. Equation~117! shows
that the variancêdw2& saturates at sufficient depth in a
dimensions for all distributions except the singular.

We now calculate the evolution of the variance with dep
using a method different from that of Sec. II@30#. First wez
transform the~discrete! t dependence of the correlation fun
tion,

c~mW ,z!5(
t50

`

c~mW ,t !zt, ~118!

and Fourier transform the space dependence,

c~pW ,z!5(
m

e2 ipW •mW c~mW ,z!. ~119!

The use of the same symbol for the correlation and its tra
forms, although customary, is potentially confusing. For e
ample,c(pW ,t→0) denotes the Fourier transform ofc(mW ,t) at
t50; no z transform is implied.

Performing both transforms on Eq.~116! we obtain

c~pW ,z!5c~pW ,t→0!1zc~pW ,z!S~pW !1
e

2D21
zc~mW →0,z!.

~120!

Here
02610
t-

n,

s-
-

S~pW !5
1

2D H 11
1

2 (
b5nn

eipW •bW1
1

22 (
b5nnn

eipW •bW1•••

1
1

2D (
b5n . . . n

eipW •bWJ
5

~11cosp1!

2

~11cosp2!

2
•••

~11cospD!

2
~121!

is a ‘‘structure factor’’ for the cubic lattice. It will also prove
convenient to define

G~pW ,z!5
1

12zS~pW !
. ~122!

Both S(pW ) andG(pW ,z) have helpful physical interpretation
that we shall make use of below. For the moment we re
range Eq.~120! to obtain

c~pW ,z!5c~pW ,t→0!G~pW ,z!

1~12d!zc~mW →0,z!@12S~pW !#G~pW ,z!.

~123!

By inverting the Fourier transform we can turn Eq.~123! into
an expression forc(mW →0,z). After further rearrangement

c~mW →0,z!5

E dpW

~2p!D
c~pW ,t→0!G~pW ,z!

12~12d!zE dpW

~2p!D
@12S~pW !#G~pW ,z!

.

~124!

Equation~124! is a general expression forc(mW →0,z) for an
arbitrary initial condition. For uniform loading of the to
layer

c~pW ,t→0!5~2p!Dd~pW !. ~125!

It follows from Eqs.~121! and ~122! that G(pW →0,z)51/(1
2z); hence Eq.~124! simplifies to

c~mW →0,z!5~12z!21H 12~12d!zE dpW

~2p!D

3@12S~pW !#G~pW ,z!J 21

. ~126!

Equation~126!, together with the definitions of the structur
factor @Eq. ~121!# and G(pW ,z) @Eq. ~122!#, constitutes an
exact formal evaluation of the variance with depth. To obt
^dw2(t)& explicitly it only remains to perform the integra
overpW and to invert thez transform. We return to this task in
the next section. We conclude this section with a useful
terpretation ofS(pW ) andG(pW ,z).
7-15
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Equation ~116! with e→0 resembles the Schro¨dinger
equation for a particle on aD dimensional cubic lattice with
hopping to the nearest neighbors, the next nearest neigh
and so on to theDth nearest neighbors. It is not difficult t
see that the eigenstates of this Schro¨dinger equation are
plane waves.S(pW ) is the dispersion relation, the eigenvalu
at wave vectorpW . From Eq. ~121! we see that the energ
level spectrum is a continuous band between zero and o

The momentum space Green’s function for this tig
binding lattice would normally be written

G~pW ,E!5
1

E2S~pW !
. ~127!

Comparing Eq.~127! to Eq. ~122! we see thatG(pW ,z) is
essentially the Green’s function withE→1/z. It is familiar
from quantum mechanics that the real space Green’s func
at the origin,

G~mW →0,E!5E dpW

~2p!D

1

E2S~pW !
, ~128!

regarded as a function of~complex! E, has a branch cu
running fromE50 to E51, the interval that supports th
eigenvalue band. It is not difficult to use the familiar arg
ments to conclude that, regarded as a function of comp
z, c(mW →0,z) has a branch cut along the linez51 to `
~onto which the segment@0,1# maps under the transformatio
E→1/z). The analytic properties ofc(mW →0,z) will prove
useful in the next section.

C. Scaling limit

In this section we study the evolution of the variance
the large depth scaling limit. Thust@1 andd is zero or very
close to it throughout.

An advantage of studying the large depth limit is that
do not have to calculatec(mW →0,z) exactly; it is only neces-
sary to calculate the leading behavior asz→1. One way to
understand this is to consider the critical cased50. In this
case we expect that at great depth

c~mW →0,t !;tx. ~129!

It is easy to show that forf (t)5tx, the z transform isG(x
11)/(12z)x11 plus less singular terms. Thus for a functio
that behaves astx for large t also thez transform is

tx↔ G~x11!

~12z!x11
1~ less singular!. ~130!

If we know the leading singularity ofc(mW →0,z) asz→1 we
can use Eq.~130! to read off the large depth behavior.

Another way to see that we only need the behavior
c(mW →0,z) asz→1 is to consider inverting thez transform
by the contour integral method of Appendix B. This is a
complished by folding the contour over the branch point
02610
rs,

e.
-

on

-
x

f

-
f

c(mW →0,z) at z51 and integrating along the cut. In tha
integral c(mW →0,z) is weighted by a factor that decays e
tremely rapidly away fromz51 at large depths.

Our goal therefore is to analyze thez→1 behavior of

G~z!5E dpW

~2p!D

1

12zS~pW !
, ~131!

since by a straightforward rearrangement the integral in
~126! simplifies to

E dpW

~2p!D
@12S~pW !#G~pW ,z!5S 12

1

zDG~z!1
1

z
.

~132!

Insight into the behavior ofG(z) can be gained by expand
ing S(pW ) aroundpW 50 to obtain

G~z!'E dpW

~2p!D

1

~12z!1pW 2/4
. ~133!

If we setz51 in Eq. ~133! the integrand diverges aspW→0
for D<2; it is regular in more than two dimensions. Thus
more than two dimensionsG(z) has a branch point atz51
but there is no actual divergence. In two dimensions or l
there is an actual divergence.

The leading behavior ofG(z) above two dimensions is
thus simply obtained by settingz51 in Eq. ~131!:

G~z!'G~1! for D.2. ~134!

In two dimensions we can obtain the singularity by reco
nizing G(z) to be a Jacobi elliptic integral. Square lattic
Green’s functions are known to be related to Jacobi’s ellip
functions; but since our lattice features next-nearest neigh
hopping, in addition to the customary nearest neighbor h
ping, we outline the analysis in Appendix D. The result
that for z→1

G~z!'2
1

p
ln~12z! for D52. ~135!

For D,2 we obtain the singular behavior ofG(z) in Appen-
dix D. The result is

G~z!5
G~12D/2!

ApD
~12z!D/221 for D,2. ~136!

An important feature revealed by this calculation is that
singular behavior ofG(z) is controlled by the long wave
length behavior ofG(p,z) for all D,2; it breaks down as
D→2. Although it is instructive to do the calculation fo
continuousD to examine theD→2 limit, the only case that
is physically relevant is of course the integer dimensionD
51.

Equipped with the leading behavior ofG(z) in all dimen-
sions we now obtain the long time behavior of^dw2(t)&. At
the critical point we setd50 and substitute Eqs.~132!,
7-16
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~134!, ~135!, and ~136! in Eq. ~126!. Except in two dimen-
sions thez transforms may be inverted by inspection of E
~130!. For two dimensions we must resort to the method
Appendix B and finally obtain

^dw2~ t !&5pD/221sinS pD

2 D tD/2 for D,2

5
t

ln t
for D52

5
1

G~1!
t for D.2. ~137!

As indicated by the simple steady state solution, at the c
cal point the fluctuations grow without bound as a power
t for all dimensions. The exponent becomes independen
D for D.2 revealingD52 as the upper critical dimension

By substituting Eqs.~132! and~136! in Eq. ~126! we can
also obtain the behavior of^dw2(t)& away from the critical
point for less than two dimensions. Inverting thez transform
by the method of Appendix B we find

^dw2~ t !&5
1

du
F~ tdw!. ~138!

Here the exponents

u51, w5
2

D
~139!

and the scaling function

F~u!5
1

D
2

2

pDE
0

`

ds
1

11s2
exp2

us2/D

qD
2/D

~140!

with qD5G(12D/2)sin(pD/2)/ApD a dimension dependen
constant. Again, only the result forD51 is physically mean-
ingful; in this case Eq.~140! coincides with the result of Sec
II.

In summary the main results of this section are that for
distributions, except the singular, at sufficient depth the lo
fluctuations saturate and~in agreement with experiment!
there are no horizontal correlations in load@Eq. ~117!#. The
saturation value of the load variance diverges as the crit
point is approached. At the critical point the load fluctuatio
grow without bound as a power of depth@Eq. ~137!#. Below
two dimensions this exponent depends on dimensiona
above two dimensions it is constant, revealingD52 as the
critical dimension. At the critical dimension the growth
fluctuations is tempered by a logarithmic factor as might
expected at a critical dimension. We have also evaluated
scaling function that describes the growth and saturation
load fluctuations near the critical point forD,2.
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VI. QUANTUM HALL MULTILAYER

A. Models

In this section we turn to the chiral wave models that a
believed to adequately describe the surface electronic s
of a quantum Hall multilayer. We begin by examining th
circumstances under which the quantum network mode
Saul, Kardar, and Read@6# discussed in Sec. I is equivalen
to a q model.

Following Saul, Kardar, and Read, the first step is to ide
tify pairs of links ~joined by vertical gray bars in Fig. 9! as
‘‘beads.’’ The ‘‘load’’ on a bead is the total probability tha
the electron is on either of its two constituent links. Lo
propagates from left to right now rather than top to bottom
it did in our earlier depictions of theq model. For this reason
we will label the vertical co-ordinaten and the horizontal
co-ordinatet here~see Fig. 3!.

To analyze how load propagates consider an elemen
vertex of the Saul, Kardar, and Read model shown in Fig
The wave function amplitudes are related via

S f2

f3
D 5SS c1

c2
D ; ~141!

hereS is a random 232 su~2! rotation matrix. Saul, Kardar
and Read assumed theS matrices were drawn from the in
variant distribution for the su~2! group @31#. The loads on
beadsA, B, and C are, respectively,uc1u21uc2u2, uf1u2
1uf2u2 and uf3u21uf4u2. By unitarity uc1u21uc2u25uf3u2
1uf4u2. Thus beadA sends a fractionf of its load to neigh-
bor B and the remainder 12 f to neighborC.

A key feature of the Saul, Kardar, and Read model is t
the distribution of the fractions,P( f ) is independent of the
input amplitudesc1 andc2. This follows from the assumed
group invariant distribution for theS matrices. It is this fea-
ture that allows the Saul, Kardar, and Read model to
mapped onto aq model.

To derive the distribution of the fractions recall that a
su~2! matrix may be parametrizedS5x01 ixW•sW with (x0 ,xW )

FIG. 9. Elementary vertex of the Saul, Kardar, and Read mod
7-17
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real and subject tox0
21xW251. If we takec151,c250 then

f 5x0
21x1

2. From the invariant distribution for su~2! matrices,

P~x0 ,xW !5
1

p
d~x0

21xW221!, ~142!

it is not difficult to show that the fractionf follows the uni-
form distribution,P( f )51 for 0, f ,1.

Now suppose the wave function is known through t
vertical slicet50. We could propagate the wave functiont
slices to the right using the quantum Saul, Kardar, and R
model. Alternatively we could calculate the load in the init
layer and propagate it to the right using theq model with
uniform distribution. Either way the load we obtain in layet
would be the same statistically. This is the sense in which
Saul, Kardar, and Read model is equivalent to theq model.

Note that theq model does not keep track of phase info
mation. The mapping is useful only under circumstances
the phase information is unimportant. Below we will discu
some problems of wave packet dynamics for which the m
ping is useful. The mapping can also be used to study ve
cal transport in the quantum Hall multilayer in the limit o
large circumference but we do not discuss that applica
here.

An obvious circumstance when the phase information
important and the mapping cannot be used is if perio
boundary conditions are imposed in the horizontalt direc-
tion, as would be appropriate for a multilayer in the ful
phase-coherent, mesoscopic regime. Phase informatio
needed to match the wave function after it is propaga
around the circumference. We will develop this point in
more technical way in Sec. VI C.

Another case in which a quantum network model w
map onto aq model is if the wave functions andS matrices
are chosen to be real and theS matrices are further assume
to be distributed over the subgroup of rotations about thy
axis with appropriate invariant measure. The fraction dis
bution P( f )5(1/p) f 21/2(12 f )21/2 for the q model that re-
sults. For most distributions of theSmatrix however it is not
possible to obtain even the limited mapping between
quantum network model and the classicalq model obtainable
in this and in the Saul, Kardar, and Read case.

Finally we present a convenient continuum model of
multilayer surface governed by the Schro¨dinger equation

2 i
]

]t
cn~ t !5mn~ t !cn11~ t !1mn21* ~ t !cn21~ t !.

~143!

Since the equation is first order int, given the wave function
at a fixedt slice we can use it to propagate the wave funct
to the right, just as in the discrete network model. In t
transverse direction the model is discrete and second o
Disorder is incorporated by taking the hopping eleme
mn(t) to be random. For a discussion of the relations
between onsite and hopping disorder see Refs.@24,26#. Evi-
dently this model cannot be reduced to a classicalq model.
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B. Wave-packet dynamics

In this section we briefly discuss wave-packet dynam
for the models of the previous section. Mathematically t
problem is identical to the motion of a wave packet in
crystal with noise~temporal randomness!. It also bears for-
mal resemblance to the directed polymer model, an imp
tant problem in statistical mechanics. Hence it is a probl
of general interest and has been studied since at leas
1970s from various points of view~see Ref.@6# and refer-
ences therein!. A considerable amount is now known.

For the Saul, Kardar, and Read model wave-packet
namics can be studied using the mapping to theq model;
indeed the mapping was introduced for this purpose. In
section we will formulate the problem and summarize kno
results. These results reveal that theq model and the con-
tinuum wave model introduced in the last section behave
qualitatively similar ways.

Consider an electron localized atn50 at t50. This wave
packet can be propagated to the right using Eq.~143!. As it
propagates it will broaden and its mean position will defle
It is interesting to know how the breadth and deflection gr
with displacement and to analyze the distribution of ‘‘loa
at sufficiently great displacement that a steady state
reached.

The root mean square width of the wave packet grows
the square root of the displacement. This was derived for
continuum model in the 1970s@32# and it is easy to show
that the same form is obtained in the Saul, Kardar, and R
model. The root mean square deflection grows as the fo
root of the displacement. This result has been obtained
merically and analytically for both the Saul, Kardar, a
Read@6,30,34# and continuum models@33,24#.

To compare the distribution of load, for the continuu
model we define the load on an edge aswn(t)5ucn(t)u2. The
asymptotic distribution of load,P(w,t→`) was obtained by
Coppersmithet al. for the q model@4#. For various distribu-
tions of the fractions,P( f ), they found thatP(w,t→`) de-
cayed exponentially withw with a power law prefactor tha
depended on the distributionP( f ). For the uniform distribu-
tion the prefactor was a constant. The corresponding re
for the continuum wave model was obtained by Ref.@25# by
mapping the problem onto an su~1,1! quantum ferromagnet
Here too the result for the load distribution is an exponen
with a prefactor linear inw.

C. Field theory formulation

We have emphasized above that the equivalence betw
the Saul, Kardar, and Read model and theq model is useful
only when open boundary conditions are imposed in
horizontalt direction; it breaks down for periodic boundar
conditions needed to describe transport in phase-cohe
multilayers. The importance of boundary conditions is a
reflected in field theory formulations of these models. In R
@24# the continuum model with open boundary conditio
was mapped onto a Heisenberg ferromagnet. In contr
with periodic boundary conditions a mapping to a supersy
metric analogue of the Heisenberg ferromagnet was obta
in Refs.@23,26#.
7-18
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DYNAMICS AND CRITICAL BEHAVIOR OF THE q MODEL PHYSICAL REVIEW E 64 026107
In this section we derive the supersymmetric spin rep
sentation following the operator methods of Ref.@24#. This
derivation highlights the role of boundary conditions, t
feature we wish to emphasize here. It only makes use
operator methods and is in this sense more elementary
the functional methods of Ref.@26#. Moreover mappings to
supersymmetric spin models have recently been used f
fully not only to study the multilayer but also to provid
nonperturbative insights into various other problems of el
tron localization@35–37#. It is hoped that the present deriva
tion, with its emphasis on boundary conditions4 and its use of
operator methods will prove of interest in this broader co
text also.

1. Fermion representation

We wish to evaluateG(n,t;n8,t8), the Green’s function
for the continuum model governed by the Schro¨dinger equa-
tion,

2 i
]

]t
G~n,t;n8,t8!5mn~ t !G~n11,t;n8,t8!

1mn21* ~ t !G~n21,t;n8,t8!

2 id~ t2t8!dnn8 , ~144!

and subject to the periodic boundary condition

G~n,t1T;n8,t8!5G~n,t;n8,t8!. ~145!

Here T is the period in thet direction. In Ref.@24#, the
Green’s function was calculated subject to the chiral bou
ary condition,G(n,t;n8,t8)50 for t,t8, leading to a sim-
pler field theory formulation.

The key idea is to reinterpret the co-ordinatet as time.
Equation ~144! then describes a particle on a on
dimensional lattice with noise. In second quantized notat
the ~time-dependent! Hamiltonian that governs the motion o
this fictitious particle is

HF
R~ t !5(

n
@mn~ t !cn

R†cn11
R 1mn21* ~ t !cn

R†cn21
R #.

~146!

Here cn
R† creates a Fermion at site n;cn

R annihilates it. The
reasons for the superscript on the Fermion Hamiltonian
on the creation and annihilation operators will become
parent shortly.

The S matrix for this model obeys

2 i
]

]t
SF

R~ t !5HF
R~ t !SF

R~ t ! ~147!

4For the effect of boundary conditions on the supersymme
mapping for models such as the Chalker model of the quantum
transition see Refs.@36# and@37# where the random hopping mode
in one dimension is analyzed with periodic and open~scattering!
boundary conditions, respectively.
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subject toSF
R(t→0)51. FromSF

R21SF
R51 it is easy to verify

the useful result

i
]

]t
SF

R215SF
R21~ t !HF

R~ t !. ~148!

We define

cn
R~ t !5SF

R21~ t !cnSF
R~ t ! ~149!

and similarly forcn
R†(t).

Now by analogy with finite temperature field theory@38#
we write the Green’s function

G~n,t;n8,t8!5Tr@SF
R~T!cn

R~ t !cn8
R†

~ t8!#/ZF
R~T! for t.t8

52Tr@SF
R~T!cn8

R†
~ t8!cn

R~ t !#/ZF
R~T!

for t,t8,

ZF
R~T!5Tr@SF

R~T!#. ~150!

ZF
R(T) is analogous to the partition function in finite tem

perature field theory. It is easy to verify thatG obeys the
differential Eq.~144! by making use of Eqs.~147! and~148!
and the commutation relation

@HF
R~ t !,cn

R#52mn~ t !cn11
R 2mn21* ~ t !cn21

R . ~151!

However,

G~n,T;n8,t8!5Tr@SF
R~T!SF

R21~T!cn
RSF

R~T!cn8
R†

~ t8!#/ZF
R~T!

5Tr@SF
R~T!cn8

R†
~ t8!cn

R#/ZF
R~T!

52G~n,0;n8,t8!. ~152!

Thus G obeys antiperiodic rather than periodic bounda
conditions. This problem is fixed by adding a term to t
Hamiltonian

HF
R~ t !→HF

R~ t !1
p

T (
n

cn
R†cn

R . ~153!

Alternatively we may replace Tr→STr in Eq. ~150!. By STr
we mean the trace of an operator over all states with an e
number of fermions minus the trace over states with an
number of fermions.

We also need an expression for the complex conjugat
the Green’s function since our ultimate purpose is to cal
late the disorder average ofuG(n,t;n8,t8)u2, the diffusion
propagator. To this end we complex conjugate Eq.~144! to
obtain the differential equation obeyed byG* . Comparison
to Eq.~144! reveals that we should considerA fermions gov-
erned by the Hamiltonian

HF
A~ t !52(

n
@mn~ t !cn11

A† cn
A1mn* ~ t !cn

A†cn
A#. ~154!

G* (n,t;n8,t8) is then given by the right hand side of Eq
~150! if we replaceR→A and Tr→STr.

y
ll
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As might be expected the Hamiltonian for theA fermions
is related to that for theR fermions via a particle hole trans
formation. This symmetry between theR fermions and theA
holes leads to an su~2! symmetry in the fermion sector of th
complete field theory formulation that we obtain below@Eq.
~171!#. It is also at the root of the supersymmetry of the fie
theory formulation.

In summary the Green’s function with periodic bounda
conditions may be generated from the second quant
Hamiltonian,HF

R(t) @Eqs.~153! and ~146!# using the defini-
tion Eq. ~150!. The complex conjugate of the Green’s fun
tion may be obtained similarly using the HamiltonianHF

A(t)
@Eq. ~154!#. Equation~150! and itsA fermion analogue pro-
vide exact formal expressions for the Green’s function fo
particular realization of the random tunnelingmn(t). These
expressions are not particularly convenient to average s
mn(t) appears in both numerator and denominator.

2. Boson representation

Alternatively we could interpret Eq.~144! as a time de-
pendent Schro¨dinger equation for bosonic particles on a on
dimensional lattice. The corresponding ‘‘time’’-depende
bosonic Hamiltonian in second quantized notation is

HB
R~ t !5(

n
@mn~ t !bn

R†bn11
R 1mn21* ~ t !bn

R†bn21
R #.

~155!

Herebn
R† creates anR boson at siten; bn

R annihilates it.
The Green’s function is now defined as

G~n,t;n8,t8!5Tr@SB
R~T!bn

R~ t !bn8
R†

~ t8!#/ZB
R~T! for t.t8

5Tr@SB
R~T!bn8

R†
~ t8!bn

R~ t !#/ZB
R~T!

for t,t8,

ZB
R~T!5Tr SB

R~T!. ~156!

Here SB
R is the bosonicS matrix andZB

R(T) is the bosonic
analog of the partition function.

For greater rigor we must regulate the traces to ens
convergence but for brevity we do not discuss this explic
here.

The complex conjugate of the Green’s function is gen
ated similarly if instead of theR bosons we considerA
bosons governed by

HB
A~ t !52(

n
@mn~ t !bn11

A† bn
A1mn* ~ t !bn

A†bn11
A #.

~157!

The main result of this subsection is Eq.~156!. It provides
a formal bosonic expression for the exact Green’s funct
for a particular realization of random tunneling,mn(t). A
similar expression forG* may be obtained by working with
the Hamiltonian Eq.~157!. Like their fermionic counterparts
these bosonic expressions are not particularly well suited
averaging over disorder.
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3. Supersymmetry

We now develop an expression for the diffusion suita
for averaging over disorder. In Appendix E it is shown th

ZF
R~T!ZB

R~T!51. ~158!

Thus we consider a model that includes bothA andR fermi-
ons and bosons governed by the Hamiltonian

HSUSY~ t !5HF
R~ t !1HF

A~ t !1HB
R~ t !1HB

A~ t !

5(
n

@mn~ t !An1mn* ~ t !An
†#. ~159!

Here

An5cn
R†cn11

R 2cn11
A† cn

A1bn
R†bn11

R 2bn11
A† bn

A . ~160!

The correspondingS matrix obeys

2 i
]

]t
SSUSY~ t !5HSUSY~ t !SSUSY~ t ! ~161!

subject toSSUSY(t→0)51. A formal solution to Eq.~161! is
given by

SSUSY~ t !5P expF i E
0

t

dt1 HSUSY~ t1!G . ~162!

HereP is the chronological ordering operator.
Hence the diffusion is given by

uG~n,t;n8,t8!u25STr@SSUSY~T!cn
R~ t !cn

A~ t !cn8
A†

~ t8!cn8
R†

~ t8!#

for t.t8

5STr@SSUSY~T!cn8
A†

~ t8!cn8
R†

~ t8!cn
R~ t !cn

A~ t !#

for t,t8. ~163!

The content of Eq.~163! is that to calculate the diffusion we
must create or annihilate a pair ofR andA fermions~depend-
ing on the time order!. Then we must propagate this state
accordance withHSUSY and perform anS matrix weighted
trace. The HamiltonianHSUSY is noninteracting but it is ran-
dom and time dependent.

Equation~163! is an exact formal expression for the di
fusion. Note the lack of a denominator, eliminated by virt
of Eq. ~158!. This feature allows us to perform the avera
over disorder easily. For example,

^SSUSY~ t !&5exp@2HSUSYt# ~164!

with

HSUSY5
D

2 (
n

~An
†An1AnAn

†!. ~165!

Here we have assumed that the tunnelingmn(t) is a Gauss-
ian white noise process with zero mean and variance
7-20
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^mn
(a)~ t !mn8

(b)
~ t8!&5Dd~ t2t8!dnn8dab . ~166!

Heremn
(1)(t)5 real part ofmn(t); mn

(2)(t)5 imaginary part
of mn(t).

Recall that for a single Gaussian random variabley, the
phase averagêeiy&5e2^y2&/2. Equation~164! is analogous to
this result but with the added complications thatSSUSY is an
ordered exponential, not a simple exponential, and the a
age is over a random process rather than a single ran
variable. To derive Eq.~165! it is simplest to expand the tim
ordered exponential@Eq. ~162!# and average term by term.

Proceeding in this manner we obtain an expression for
average diffusion

^uG~n,t;n8,t8!u2&5STr$exp@2HSUSY~T2t1t8!#cn
Rcn

A

3exp@2HSUSY~ t2t8!cn
A†cn

R†%

for t.t8. ~167!

A similar expression may be written for the caset,t8. The
content of Eq.~167! is that to calculate theaveragediffusion
we must create~or for the other time order, annihilate! a pair
of R andA fermions and propagate the resulting state acco
ing to the effective HamiltonianHSUSY. In contrast toHSUSY
the effective Hamiltonian is not time dependent or rand
but it is interacting.

This completes our formulation of the continuum direct
wave model of Sec. VI A as a superspin field theory. T
main results are the superspin Hamiltonian@Eq. ~165!# and
Eq. ~167! that shows how interesting correlation functio
are calculated in the superspin formulation. The usefuln
of this formulation depends on the extent to which the sup
spin model can be analyzed.

In the remainder of this section we discuss the form a
symmetry of the superspin Hamiltonian@Eq. ~165!#. To this
end it is helpful to introduce special notation for the bos
and fermion bilinears of whichHSUSY is composed. We de
note the fermion bilinears

J15cR†cA†5Jx1 iJy ,

J25cAcR5Jx2 iJy ,
~168!

Jz5
1

2
~cR†cR1cA†cA21!,

J5
1

2
~cR†cR2cA†cA11!;

the boson bilinears,
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K15bR†bA†5Kx1 iK y ,

K25bAbR5Kx2 iK y ,
~169!

Kz5
1

2
~bR†bR1bA†bA11!,

K5
1

2
~bR†bR2bA†bA21!;

and the mixed bilinears,

M15bR†cR, M25bA†cA,

L15bA†cR†, L25bR†cA†. ~170!

In Eqs. ~168!, ~169!, and ~170! the site indices have bee
suppressed for brevity. In terms of these bilinears we m
write

HSUSY522D(
n

~JWn11•JWn1Jn11Jn2Jn!

12D(
n

~KW n11•KW n1Kn11Kn1Kn!

1D(
n

~Mn11
(1)†Mn

(1)1Mn11
(2)†Mn

(2)1H.c.!

1D(
n

~Ln11
(1)†Ln

(1)1Ln11
(2)†Ln

(2)1H.c.!. ~171!

Here H.c. denotes Hermitian conjugate andKW n11•KW n

5Kn11
z Kn

z2Kn11
x Kn

x2Kn11
y Kn

y .
It is instructive to study the commutation relation

for bilinears at the same siten ~bilinears at different
sites simply commute or anticommute!. It is easy to verify
that J1 , J2, and Jz satisfy angular momentum or su~2!
commutation relations andJ commutes with the other three
Similarly K1 , K2, andKz satisfy the su~1,1! or hyperbolic
angular momentum algebra—essentially the angular mom
tum algebra but with a sign change for theK1 ,K2 commu-
tator@39#. K commutes with the other three. The anticomm
tators ofLi , Li

† , Mi , andMi
† are linear combinations of the

K ’s andJ’s. The commutators of theJ’s or K ’s with the L ’s
or M ’s are linear combinations of theL ’s and M ’s. Hence
these bilinears constitute a superalgebra. TheJ’s andK ’s are
commuting elements of the superalgebra; theL ’s and M ’s,
anticommuting elements. The superalgebra is called u~1,1–
2!. It includes the Lie algebras su~2! and su~1,1! as subalge-
bras.

Further insight into the superalgebra is obtained by c
sidering the Hilbert space at a single site. This is a dir
product of the four-dimensional fermion space and the in
nite dimensional two-boson space. The fermion space m
be decomposed into irreducible representations of the s~2!
algebra. The fermion vacuum and the state with bothR andA
7-21
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fermions present constitute a doublet or spin one-half re
sentation; the two states with one fermion present are
glets. The boson space similarly decomposes into an infi
of infinite dimensional irreducible representations
thesu~1,1! algebra.5 The single site Hilbert space thus decom
poses rather simply into irreducible representations of
direct sum of the su~2! and su~1,1! algebra. These subspac
do not constitute a representation of the whole superalge
The anticommuting elements mix different irreducible rep
sentations of su~2! and su~1,1!. In particular they mix repre-
sentations with different spins—a celebrated feature of
persymmetry. It is not difficult to decompose the single s
Hilbert space into blocks irreducible under the superalge
however this would carry us too far afield. More details
the superalgebra are given in Ref.@26# and references
therein.

Finally we define

Jtot5(
n

Jn . ~172!

HereJ denotes any element of the superalgebra such asJ1 ,
Kz , L1 , etc. After some algebra we find

@HSUSY,Jtot#50 ~173!

revealing the supersymmetry of the field theory formulatio

VII. SUMMARY AND CONCLUSION

Much of this paper is concerned with the behavior of t
q model close to the critical point. To probe this behavior
imagine that a uniform load is applied to the top layer. T
assumption of uniform load is for convenience; in the scal
limit the behavior of the load at sufficient depth is insensit
to the initial distribution. As the load propagates downwa
fluctuations develop in the distribution of load. Coppersm
et al. @4# studied the entire distribution of load at very gre
depth where it was presumed that a steady state had
reached. In contrast we study only the variance of the dis
bution of load but we analyze its evolution with depth. O
purpose is to study this evolution for all distributions of t
fractionsP( f ) particularly those close to the singular dist
bution ~the critical point!.

In Sec. II we consider theq model in 111 dimensions
without injection ~the weight of the beads is neglected!. In
this case the average load does not vary with depth since
total load is the same in every layer; it is merely redistribu
by theq-model dynamics. For the growth of the variance,
analogy to critical phenomena, we make the following h
potheses: For all distributionsP( f ) except the singular dis

5Let un1m,n& denote a state with (n1m) R bosons andn A
bosons on the site. The infinite dimensional subspace withm a fixed
integer and n50,1,2, . . . , for m>0, or n52m,2m11,5m
12, . . . , for m,0, is invariant under the fourK operators. These
subspaces corresponding to different values ofm constitute the ir-
reducible representations of the su~1,1! algebra.
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tribution we posit that the variance will saturate at sufficie
depth. Both the saturation depth and the saturated varia
are expected to diverge as the distribution approaches
singular distribution. We introduced, a measure of the dis
tance of a distributionP( f ) from the singular distribution,
and conjecture that the saturation depthjcorr will diverge as
1/dw; the saturated variance, as 1/du. More specifically, we
expect that close to the critical point the variance will hav
scaling form, Eq.~7!. For the singular distribution we expec
that the variance will grow indefinitely as a power of th
depth. Close to the critical point and at depths shallow co
pared to the saturation depth the variance should grow a
would right at the critical point. From this and from Eq.~7!
we deduce a relationship between the critical exponentu
and w and the exponent that describes the growth of
variance right at the critical point; namely we expect that
the critical point the variance will grow astu/w. In Secs. II B
and II C we derive an exact formula for the variance as
function of depth@Eq. ~46!# and study its scaling limit (t
@1, d→0 but with tdw arbitrary!. These calculations bea
out all the expectations enumerated above, provide the
cise form of the scaling function@Eq. ~50! and Fig. 4# and
yield the exact exponents@Eq. ~49!#.

In Sec. III we characterize the critical point more fully b
analyzing the evolution with depth of the entire distributio
of load right at the critical point in 111 dimensions. In the
absence of injection the critical point is a simple model
random walkers that coalesce upon contact; hence it is q
straightforward to derive these results. We present them
cause they illuminate the results of the previous section
large depth it is found that the distribution of load consists
a large spike at zero load together with a smooth part@Eqs.
~73! and ~76!#. It is overwhelmingly probable that the loa
on a bead is zero; most of the weight of the distribution is
the spike. The smooth part follows the anticipated scal
form @Eq. ~53!#. Its width grows as the square root of th
depth, consistent with the exponent found in Sec. II to
scribe the growth of the variance of load at the critical poi

In Sec. IV the effect of injection is included. For simplic
ity we consider only 111 dimensions. We assume that th
weights of the beads are independent and identically dist
uted random variables. The behavior of the mean load is
not very interesting. It grows linearly with depth@Eq. ~77!#.
Close to the critical point we conjecture that the varian
will have the form Eq.~78!. We are able to deduce all th
exponents in Eq.~78! and to obtain some limiting behavior
of the scaling function through simple~nonrigourous! argu-
ments. These conjectures are all verified by the exact ca
lation of Secs. IV A and IV B that provides the precise for
of the scaling function@Eqs. ~99!, ~102!, and ~103!# and
yields all the exponents@Eqs.~80!, ~81!, and~84!#. We find
that beyond a crossover depth the variance~normalized by
the squared mean! saturates. The saturation value and t
crossover depth both diverge as the critical point is
proached. At depths less than the crossover depth the
ance grows as it would right at the critical point@Eq. ~106!#.
The behavior at the critical point has many crossovers if
weight of the beads is small compared to the applied load
this case at first the variance grows as the square root o
7-22
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depth as it was found to do in Sec. II in the absence
injection. At greater depths there are crossovers to growt
t and t5/2, as first the effects of large rare fluctuations in t
weight of a bead and then mean injection assert themse
Ultimately at the critical point the variance grows with th
5/2 exponent but the depth at which this behavior sets in
be very great if the mean injection is small. This depth
verges aŝ I &24/3. The crossover exponent 4/3, deduced
simple arguments and then via exact calculation in Sec.
agrees with the value previously obtained by a differ
method by Majumdar and Sire@28#. In their work Majumdar
and Sire only study the behavior right at the critical poi
However at this point they calculate the dynamics of
entire distribution of load whereas we study only the va
ance.

In Sec. V we turn to theq-model inD11 dimensions. For
simplicity we neglect injection in this section. We find th
right at the critical point the variance grows as a power
depth in all dimensions except two@Eq. ~137!#. The power is
given by D/2 for D,2. For all dimensions above two th
growth is linear. This shows thatD52 is the upper critical
dimension for this problem. ForD52 we find a linear
growth of the variance tempered by a log factor as might
expected at the critical dimension.

An intriguing feature of the critical behavior we obtain
that it is exhibited at all. For ordinary continuous phase tr
sitions the renormalization group provides a framework
understand the critical behavior. We are not aware of
such framework for theq model.

Random critical points are notoriously difficult to analy
in general. The feature that allows us to analyze theq model
is that the two point load correlation function@defined by
Eqs.~8! and~114!# evolves with depth according to a simp
linear equation. In Sec. II we analyze the evolution by e
panding in the eigenvectors of an appropriate linear opera
There are some subtleties posed by the non-Hermiticity
the linear operator, making it necessary to prove that
eigenvectors are complete~further complicated by the infi-
nite dimensionality of the vector space!. Nonetheless we like
this approach because it parallels transfer matrix meth
used for equilibrium critical phenomena. We find that t
large depth scaling behavior is controlled by the low ene
long wavelength eigenfunctions of the non-Hermiti
‘‘Hamiltonian.’’ Another virtue of this approach is that with
about the same effort it yields both the variance and
correlation functions. However we have left analysis of t
correlation functions open for later work. Here we focus e
tirely on the variance of the load. In Sec. V we analyze
variance using another technique based on transform m
ods.

Our analysis, neglecting injection, confirms that theq
model has essentially no horizontal correlations in the ste
state for any distribution except the singular. This agr
with experiments on bead packs. The bulk of our resu
however are concerned with theq model close to the critica
point. Bead pack experiments such as those of Ref.@12# ap-
pear to be far from the critical point. We estimated'0.5 for
this experiment. It is not obvious how to tune the parame
for bead packs to access the critical behavior we ana
02610
f
as

es.

n
-
y
V,
t

.
e
-

f

e

-
o
y

-
r.
f

ts

ds

y

e
e
-
e
th-

y
s
s

r
e

here. Claudinet al. have also studied the horizontal stea
state correlations of theq model without injection away from
the critical point @8#. They employ a continuum limit and
arrive at conclusions similar to Eq.~19! in Sec. II B. The
main focus of their work however is to explore a tens
model of stress propagation in granular matter, intended
supplant theq model.

Interpreted in terms of river networks our results sho
that allowing a small amount of river splitting in a Scheide
ger network introduces a length scale in the vertical dir
tion. On sufficiently long length scales such a network is n
scale invariant. This resembles the finding of Narayan a
Fisher @20#. In their model too there was a parameter th
controlled river splitting. Their networks were not scale i
variant unless river splitting was tuned to zero. Howev
their model appears to be in a different universality class
its vertical correlation exponent is different from the val
w52 we obtain here in Sec. II. Presumably the difference
because their rule for stream splitting was nonlocal and
pended on the entire history of the network upstream fr
the split.

Taken together with the model of Narayan and Fishe
appears that river splitting is a perturbation that spoils
scale invariance of river networks. It is therefore interest
to ask whether such networks exist in Nature. River de
are one possibility. Traced backwards they may constit
networks of merging streams that occasionally split. Even
river basins it might be interesting to examine the extent
which streams split. In this context it is worth noting th
some of the data against which river scaling laws are tes
are based not on actual maps of the river network but
networks that are indirectly inferred according to certa
rules from digital elevation data obtained from satellite im
ages. The rules by which the network is inferred from t
elevation maps exclude the possibility of splitting@18#.

In summary theq model is rich in applications and behav
ior and yet analytically tractable by elementary means
combination of circumstances that invites further explo
tion. Among the many problems that remain open we c
clude by mentioning two: For theq model beyond the satu
ration depth there is no correlation in the horizontal direct
but in the vertical direction there are very strong and lo
ranged correlations@40#. We have not obtained the precis
form of these vertical correlations for theq model either in
steady state or at the critical point. It would be very intere
ing ~and straightforward! to obtain these forms and the cros
over between them. Second it would be interesting to ob
the dynamics of the entire distribution of load near the cr
cal point. We have not attempted to do this except right at
critical point.

A natural scaling hypothesis is that the full distribution
load, neglecting injection, will be of the form

P~w,t,d!5w2tP~wd1/s,tdnz!. ~174!

The exponents in Eq.~174! are t52, nz52, and s51.
Their values are fixed by our result for the variance aw
from the critical point derived in Sec. II and the result for th
entire distribution at the critical pointd50 derived in Sec.
7-23
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III. We also know that forx→0 and y→0, the presently
unknown functionQ has the asymptotic behavior

Q~x,y!'
4

Ap

x

y3/2
e2x2/y ~175!

to be consistent with the critical point distribution@Eq. ~73!#
derived in Sec. III.

In the second part of this paper we turn to chiral wa
models that are believed to describe the surface electr
states of a quantum Hall multilayer. In Sec. VI A we discu
circumstances under which the quantum network mode
Saul, Kardar, and Read~described in the introduction! is
equivalent to theq model. In Sec. VI B we compare know
results about the behavior of theq model to a continuum
chiral wave model that cannot be mapped onto aq model
under any circumstance. The two are found to behave
qualitatively similar ways.

A circumstance under which the mapping to theq model
is not useful is when periodic boundary conditions must
imposed in the chiral direction. Physically this is because
the interference of electron paths that wind around the qu
tum Hall multilayer. Such long range interference cannot
captured by the classicalq model. In this phase-coherent o
mesoscopic regime, the chiral wave model has been stu
via a mapping to a supersymmetric spin model@23,26#. In
Sec. VI C we derive this mapping in a way that emphasi
boundary conditions. Our derivation makes use of opera
methods and is hence more elementary than the derivatio
Ref. @26# that makes use of mixed functional integrals ov
Grassman and bosonic variables. We do not attempt fur
analysis of the superspin model here; the interested re
should consult papers on multilayer transport, particula
Refs.@41# and@23# that provide a nice overview of the ear
work on this problem.

Mappings to superspin models have been useful not o
in the study of the quantum Hall multilayer but have al
recently lead to new nonperturbative results and insights
other important problems of electron localization@35–37#.
Hence it is hoped that our derivation, with its emphasis
boundary conditions and use of elementary operator m
ods, will be of interest in this general context.

Note added. While writing this paper we learned of a
e-print by Rajesh and Majumdar on spatiotemporal corre
tions in the Takayasu model and theq model @42#. These
authors derive many interesting results complementary
ours. In this paper we concentrate on the behavior clos
the critical point. For theq model, Rajesh and Majumda
concentrate on length scales long compared to our ver
correlation lengthjcorr; the crossovers and scaling functio
that we study are transients that are invisible in th
asymptotic formulas. On the other hand they have deri
both vertical and horizontal load correlation functions; th
paper is limited~in practice but not in principle! to the study
of the variance of load. Among their interesting findings~i!
they find power law correlations in the vertical direction bo
at the critical point and away from it addressing in par
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question raised above; and~ii ! they emphasize the interestin
structure of the horizontal correlation function, including i
jection, at great depth.

Although the goals are a bit different, there are points
intersection between the two papers with regard to techniq
Rajesh and Majumdar too exploit the linearity of the relati
that describes the evolution of the correlations with de
and solve it using the method of Sec. V. An overlappi
result is a formula for the variance at the critical point in
11 dimensions including injection. At the large depths stu
ied by Rajesh and Majumdar the last term in our Eq.~106!
should dominate. Rajesh and Majumdar obtain the same
ponent 5/2 and the same numerical prefactor 16/15Ap pro-
viding a nice check on both calculations.
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APPENDIX A: PROOF OF COMPLETENESS

First let us recall the principles of biorthogonal expansi
~see, for example, Ref.@27#, p. 884!. We discuss the simples
case of a finiteN3N dimensional non-Hermitian matrix
Hmn . Consider its eigenvectors

(
n

Hmnfn
l5lfm

l . ~A1!

In context of biorthogonal expansion these eigenvectors
called the right eigenvectors. For simplicity we will assum
that the right eigenvalues are nondegenerate in this case
bad news regarding the right eigenvectors is:~i! l may be
complex.~ii ! There is no guarantee that there areN eigen-
vectors~needed to span the vector space!. ~iii ! Eigenvectors
corresponding to different eigenvalues are not necessarily
thogonal.

Now consider the left eigenvectors, defined as the eig
vectors ofH†. ~i! If l is a right eigenvalue thenl* is a left
eigenvalue~Proof: The coefficients for the characterist
polynomials ofH and H† are complex conjugates of on
another!. ~ii ! There are as many left eigenvectors as rig
~iii ! Left eigenvectors are orthogonal to right eigenvector

The last point merits elaboration. Letcn
l denote the left

eigenvector with left eigenvaluel* . Thus

(
n

Hmn
† cn

l5l* cm
l . ~A2!

According to~iii ! above
7-24
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(
n

~cn
l!* fn

l85dll8 . ~A3!

Equation ~A3! is the biorthogonality relation. It may be
proved by noting

(
mn

~cn
l!* Hnmfm

l85l(
n

~cn
l!* fn

l8

5l8(
n

~cn
l!* fn

l8, ~A4!

whence(n(cn
l)* fn

l850 for lÞl8.
In general there is no guarantee of completeness, bu

this case assume thatN eigenvectors have been found. Th
we can prove thecompletenessrelation

(
l

~cm
l !* fn

l5dmn . ~A5!

The proof follows from the observation that if there areN
eigenvectors, any vectoran may be expanded as

an5(
l

alfn
l . ~A6!

Completeness then follows from biorthogonality, Eq.~A3!.
The problem in Sec. II B presents some complications

present in the pedagogical discussion above. Among th
are degeneracy, an infinite dimensional vector space a
continuous spectrum. Nonetheless the broad strategy is
same. In Sec. II B we found left and right eigenvectors a
we conjectured biorthogonality and completeness relatio
To justify the analysis of Sec. II B we must prove the co
pleteness relation. That is the purpose of this Appendix. N
that we cannot simply assume completeness is true—bec
the matrixH is non-Hermitian there are no theorems to gu
antee it. Nor can we prove completeness by counting eig
vectors as in the finite dimensional discussion above.

The proof of completeness is remarkably simple and
rect. We substitute the exact expressions forcm

(6)k andfn
(6)k

that we have derived, Eqs.~28!, ~31!, ~33!, and~34!, on the
right hand side of Eq.~36! and verify the completeness rela
tion by explicit evaluation of the integral. There are ni
cases to consider corresponding ton50,n.0,n,0 and m
50,m,0,m.0.

For illustration we analyze the case ofn50,m50. We
must evaluate

2

pE0

p

dkA* ~k!A~k!, ~A7!

whereA(k) and A(k) are as given in Eqs.~30! and ~35!.
Since the integrand is symmetric ink we extend the range o
integration from2p to p and substitutez→eik to obtain a
contour integral about the unit circle
02610
in

t
m
a

he
d
s.
-
te
se

-
n-

i-

R dz

2p i

1

z

~12e!~z11!2

e2~z21!22~12e!2~z11!2
. ~A8!

Evaluation via Cauchy’s theorem reveals that the integ
equals one as required for completeness.

The remaining eight cases also succumb to this metho
analysis.

APPENDIX B: INVERSE z TRANSFORM

Consider the seriesf (t), t50,1,2, . . . . Itsz transform is
defined as

f ~z!5(
t50

`

f ~ t !zt. ~B1!

Somez transforms can be inverted by inspection. For e
ample the inverse transform of (12az)21 is evidently

~12az!21→ f ~ t !5a t. ~B2!

In other cases the inverse transform can be found by
forming the complex integral

f ~ t !5 R
C

dz

2p i

f ~z!

zt11
. ~B3!

The contourC must enclose the origin but no singularities
f (z).

For illustration let us analyze

f ~z!5~12z!21/2~12az!21 ~B4!

needed to go from Eq.~43! to Eq. ~44! in Sec. II B. Herea
.1. f (z) has a pole at 1/a and a branch cut atz51 ~see Fig.
10!. We deform the contourC that encloses the origin to
contoursC1 andC2 that encircle the pole and pass above a
below the branch cut. Hence obtain

f ~ t !5A a

a21
a t2

1

apE1

`

dx~x21!21/2
1

xt11 S x2
1

a D 21

.

~B5!

The first term is the contribution of the pole; the second,
the branch cut.

FIG. 10. Contours for inverting thez transform.
7-25
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APPENDIX C: ASYMPTOTICS OF Fn„u…

The asymptotics of the functionsFn(u) defined by Eq.
~103! are needed to obtain the asymptotic behavior of
scaling functions in Secs. II C and IV B.

The largeu behavior poses no difficulty. Evidently

Fn~u!'
Ap

2

1

Au
as u→` ~C1!

for all n. The smallu behavior is a bit more subtle. More
over, it turns out that due to cancellations we will need
many as five or six terms in the smallu series forFn to
obtain the leading behavior of the scaling functions.

For definiteness consider the smallu behavior of

F1~u!5E
0

`

ds
e2us2

~11s2!
. ~C2!

The leading term is obtained by settingu50,

F1~0!5
p

2
. ~C3!

To obtain the next term it is tempting to expand the integra
in powers ofu but this leads to divergent integrals. The d
vergence signals that the asymptotic series is not a sim
power series inu.

It turns out the next term goes asAu. To show this, and to
efficiently obtain many more terms in the series, conside

g~x!5E
0

`

ds
e2x2s2

~11s2!
. ~C4!

We will show thatg(x) is regular aboutx50 and that its
asymptotic behavior is a simple power series. To this end
observe thatg(x) obeys the first order differential equation

d

dx
g22xg~x!1Ap50. ~C5!

x50 is a regular point for this equation; hence we attemp
series solution

g~x!5b01b1x1b2x21¯ . ~C6!

We find b152Ap and the simple recurrence relation

bn5
2

n
bn22 . ~C7!

Evidently b05g(0)5p/2. Hence we obtain the asymptot
series

g~x!5
p

2
2Apx1

p

2
x22

2

3
Apx31

p

4
x42

4

15
Apx51¯ .

~C8!

Substitutingx→Au we conclude
02610
e

s

d
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a

F1~u!5
p

2
2Apu1/21

p

2
u2

2

3
Apu3/21

p

4
u22

4

15
Apu5/2

1¯ ~C9!

for small u. Similarly

F2~u!5
p

4
2

p

4
u1

2

3
Apu3/22

3

8
pu21

8

15
Apu5/21¯

F3~u!5
3p

16
2

p

16
u1

3p

32
u22

4

15
Apu5/21¯ .

~C10!

APPENDIX D: LATTICE GREEN’S FUNCTION

1. Two dimensions

Consider the Green’s function in two dimensions for t
lattice Schro¨dinger equation discussed in Sec. V A. The re
space Green’s function at the origin is given by

G~E!5E
2p

p dk

2pE2p

p dp

2p H E2
1

4
~11cosp!~11cosk!J 21

~D1!

@cf. Eqs. ~121! and ~128!#. We consider realE.1. In this
appendix we show that

G~E!5
2

pE
KS 1

AE
D ; ~D2!

hereK is a complete elliptic integral of the first kind. From
the well-documented properties of these integrals or by
rect analysis of Eq.~D8! below it follows that asE→11

G~E!'
1

p
ln

1

E21
. ~D3!

In Sec. V C we are interested in the behavior ofG(z), Eq.
~131!, as the real variablez→12. Comparing Eqs.~131! to
~D1! we see that

G~z!5
1

z
GS E→ 1

zD . ~D4!

Hence the singularity ofG(z) asz→1 is

G~z!52
1

p
ln~12z!. ~D5!

Equation~D5! is the main result of this section of the Ap
pendix.

To demonstrate Eq.~D2! we regardp as a complex vari-
able p→x1 iy . The integral overp in Eq. ~D1! may be re-
garded as an integral around the contour sketched in Fig
since the two vertical segments cancel by the periodicity
the integrand and the horizontal segment at infinity makes
7-26



i

st

n

is

n

her

ri-

on

mi-
the

’s

DYNAMICS AND CRITICAL BEHAVIOR OF THE q MODEL PHYSICAL REVIEW E 64 026107
contribution because the integrand vanishes along it. The
tegrand in Eq.~D1! has a simple pole atp5 iy , where y
satisfies

coshS y

2D5
AE

cos~k/2!
, ~D6!

with residue

S iEA12
1

E
cos2

k

2D 21

. ~D7!

Hence by Cauchy’s theorem

G~E!5
1

EE2p

p dk

2p S 12
1

E
cos2

k

2D 21/2

. ~D8!

Comparing to the definition of the elliptic integral of the fir
kind

K~k!5E
0

p/2

du~12k2 sin2 u!21/2 ~D9!

we obtain Eq.~D2!.

2. Below two dimensions

In this section we analyze the singular behavior asz→1
of G(z) in less than two dimensions. The approximate lo
wavelength expression forG, Eq. ~133!, provides a useful
starting point.

To analyze the divergence inD51 we would note that the
integrand in Eq.~133! is a sharply peaked Lorentzian. Th
justifies working to quadratic order inS(pW ) and extending
the range of integration~strictly confined to the Brillouin
zone,2p,p,p in one dimension! to 6`. Result:G(z)
5(12z)21/2.

To continue this result to nonintegralD we use ’t Hooft
and Veltman’s dimensional regularization trick@43#. We
write

G~z!'E
0

`

dsE dpW

~2p!D
exp2s@~12z!1pW 2#; ~D10!

extend the range of integration, outside the Brillouin zo
and over allpW -space; and replace

FIG. 11. Contour for evaluation of two-dimensional Green
function.
02610
n-

g

e

dpW

~2p!D
→ VD

~2p!DE0

`

dp pD21, ~D11!

since the integrand in Eq.~D10! is isotropic inpW . HereVD

52ApD/G(D/2) is the total solid angle inD dimensions
~some familiar special cases:V152,V252p,V354p,V4
52p2.! The result is

G~z!5
G~12D/2!

ApD
~12z!D/221 ~D12!

for D,2.
This analysis breaks down in two dimensions and hig

because the integrand diverges aspW→`. The divergence is
an artifact of the quadratic approximation in Eq.~133! and of
extending the integral outside the Brillouin zone. The spu
ous divergence is revealed in Eq.~D12! as a pole in the
Gamma function factor asD→2.

APPENDIX E: ANALYSIS OF PARTITION FUNCTION

The purpose of this Appendix is to show that the partiti
functions for bosons and fermions cancel. Thus

Tr@SF
R~T!#Tr@SB

R~T!#51. ~E1!

A similar relation holds for the advanced bosons and fer
ons. We discuss the retarded case explicitly. For brevity
superscriptR will be omitted.

We write the fermionS matrix as

SF~ t !5expS i
pt

T (
n

cn
†cnDSF~ t !. ~E2!

SF(t) is then governed by the Hamiltonian Eq.~146! without
the extra term included in Eq.~153!.

To make further progress we introduceel
n(t), the solution

to the Schro¨dinger Eq.~144!

2 i
]

]t
el

n~ t !5ml~ t !el 11
n ~ t !1ml 21* ~ t !el 21

n ~ t ! ~E3!

subject toel
n(t→0)5dnl .

The scattering formula

cnSF~ t !5(
l

en
l ~ t !SF~ t !cl ~E4!

will prove very useful. To derive it, rewrite Eq.~E4! as

SF~ t !21cnSF~ t !5(
l

en
l ~ t !cl ~E5!

and regard it as an ansatz with the functionsen
l (t) unspeci-

fied. Making use of Eqs.~147!, ~148!, and ~151!, the t de-
rivative of the left hand side is
7-27
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SF~ t !21$mn~ t !cn111mn21* ~ t !cn21%SF~ t !

5(
l

cl$ml~ t !en11
l ~ t !1ml 21* ~ t !en21

l ~ t !%. ~E6!

To obtain the second line we have made use of the an
~E5!. Comparing Eq.~E6! to thet derivative of the right hand
side of Eq.~E5! we conclude thaten

l (t) does obey the Schro¨-
dinger Eq.~E3!. This completes the proof of the scatterin
formula ~E4!.

Another relation that will prove useful is

SF~ t !u0&5u0&. ~E7!

This follows because the Hamiltonian@Eq. ~146!# annihilates
the vacuum;SF is the ~chronologically ordered! exponential
of the Hamiltonian.

Equipped with these results we write the fermion partiti
function as

ZF~T!5TrH expF ip(
n

cn
†cnGSF~T!J

5^0uSF~T!u0&2(
n

^0ucnSF~T!cn
†u0&

1
1

2 (
n1 ,n2

^0ucn1
cn2

SF~T!cn2

† cn1

† u0&

2
1

3! (
n1 ,n2 ,n3

^0ucn1
cn2

cn3
SF~T!cn3

† cn2

† cn1
u0&1¯ .

~E8!

The trace is taken over the entire Fock space including st
with different total numbers of fermions. The alternatin
signs are due to the factor exp@ip(ncn

†cn# in the trace. The
factorials are because the sums over the site indicesni are
unrestricted; hence each state gets counted a multiple n
ber of times.

We now shift theS matrix to the left using the scatterin
formula ~E4!, make use of the adjoint of Eq.~E7! and calcu-
late the vacuum expectations of the fermion operat
~Wick’s theorem!. The result for the second-order term is

ZF~T!5
1

2 F(
n

en
n~T!G2

2
1

2 (
n1 ,n2

en1

n2~T!en2

n1~T!1~others!.

~E9!

Figure 12~b! shows a diagrammatic representation of t
term. Note that the diagram series for the partition funct
ZF(T) contains both connected and unconnected graphs
familiar arguments@38# we can write

ZF~T!5exp@2V~T!#, ~E10!

where the ‘‘free energy’’V(T) has the linked diagram ex
pansion shown in Fig. 12~c!.
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We turn now to the boson partition function.
The boson scattering formula

bnSB~ t !5(
l

en
l ~ t !SB~ t !bl ~E11!

can be proved in the same way as Eq.~E4!. Equation~E7!
remains true when we replaceSF→SB .

The boson partition function is therefore given by

ZB~T!5Tr$SB~T!%

5^0uSB~T!u0&1(
n

^0ubnSB~T!bn
†u0&

1
1

2! (
n1 ,n2

^0ubn1
bn2

SB~T!bn2

† bn1

† u0&1¯ .

~E12!

This equation resembles Eq.~E8! but there is an extra
subtlety in the combinatoric factors. In the two-boson ca
for example, for the off-diagonal terms (n1Þn2) the factor
(1/2!) is to offset double counting as in the fermion case. F
the diagonal terms, that vanish in the fermion case, ther
no double counting but the factor (1/2!) is needed for n
malization.

By shifting SB(T) to the left by use of the scattering for
mula we see that the series forZB(T) is the same as for
ZF(T) except for the minus signs. Hence

ZB~T!5exp@1V~T!#, ~E13!

whereV(T) is defined by the diagram series in Fig. 12~c!.
Equations~E10! and ~E13! together lead to Eq.~E1!, the

result we sought to prove here.

FIG. 12. Feynman diagrams for the partition function.~a! Dia-
gram representation of the propagatorel

n(T). ~b! Second-order dia-
grams for the partition function.~c! Lowest-order diagrams in the
infinite series for the free energy.
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